CF 156 C Almost Arithmetical Progression

本文探讨了如何在给定的整数序列中找到最长的几乎等差数列子序列,提供了详细的算法实现步骤和实例解析。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

C. Almost Arithmetical Progression
time limit per test
1 second
memory limit per test
256 megabytes
input
standard input
output
standard output

Gena loves sequences of numbers. Recently, he has discovered a new type of sequences which he called an almost arithmetical progression. A sequence is an almost arithmetical progression, if its elements can be represented as:

  • a1 = p, where p is some integer;
  • ai = ai - 1 + ( - 1)i + 1·q (i > 1), where q is some integer.

Right now Gena has a piece of paper with sequence b, consisting of n integers. Help Gena, find there the longest subsequence of integers that is an almost arithmetical progression.

Sequence s1,  s2,  ...,  sk is a subsequence of sequence b1,  b2,  ...,  bn, if there is such increasing sequence of indexes i1, i2, ..., ik(1  ≤  i1  <  i2  < ...   <  ik  ≤  n), that bij  =  sj. In other words, sequence s can be obtained from b by crossing out some elements.

Input

The first line contains integer n (1 ≤ n ≤ 4000). The next line contains n integers b1, b2, ..., bn (1 ≤ bi ≤ 106).

Output

Print a single integer — the length of the required longest subsequence.

Sample test(s)
input
2
3 5
output
2
input
4
10 20 10 30
output
3
Note

In the first test the sequence actually is the suitable subsequence.

In the second test the following subsequence fits: 10, 20, 10.




#pragma comment(linker, "/STACK:1024000000,1024000000")
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<queue>
#include<stack>
#include<vector>
#include<set>
#include<map>

#define L(x) (x<<1)
#define R(x) (x<<1|1)
#define MID(x,y) ((x+y)>>1)

#define bug printf("hihi\n")

#define eps 1e-8
typedef __int64 ll;

using namespace std;

#define N 4004

int n,a[N];
int dp[N][N];

void solve()
{
    int i,j;
    memset(dp,0,sizeof(dp));
    dp[0][0]=0;
    int ans=1;
    for(i=1;i<=n;i++)
    {
        int last;
        for(j=last=0;j<i;j++)
          {
              dp[i][j]=dp[j][last]+1;
              //printf("%d %d %d %d\n",last,i,j,dp[i][j]);
              ans=max(ans,dp[i][j]);
              if(a[j]==a[i]) last=j;//last 代表坐标小于j的a[i]的坐标最大的位置
          }
    }
    printf("%d\n",ans);
}

int main()
{
    int i,j;
    while(~scanf("%d",&n))
    {

        for(i=1;i<=n;i++)
            scanf("%d",&a[i]);
        solve();
    }
    return 0;
}




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值