import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
from sklearn.linear_model import LogisticRegression
df_train = pd.read_csv(r'E:\BaiduNetdiskDownload\Datasets\Breast-Cancer\breast-cancer-train.csv')#利用pandas读入数据
df_test =pd.read_csv(r'E:\BaiduNetdiskDownload\Datasets\Breast-Cancer\breast-cancer-test.csv')
#选取ClumpThickness与cell size作为特征,构建测试集中的正负分类样本
df_test_negative = df_test.loc[df_test['Type']==0][['Clump Thickness','Cell Size']]
df_test_positive = df_test.loc[df_test['Type']==1][['Clump Thickness','Cell Size']]
plt.scatter(df_test_negative['Clump Thickness'],df_test_negative['Cell Size'],marker='o',s=200,c='red')
plt.scatter(df_test_positive['Clump Thickness'],df_test_positive['Cell Size'],marker='x',s=150,c='black')
plt.xlabel('Clump Thickness')
plt.ylabel('Cell Size')
plt.show()
#利用numpy中的random函数随机采样直线的截距和系数
intercept =np.random.random([1])
coef =np.rando
import matplotlib.pyplot as plt
import numpy as np
from sklearn.linear_model import LogisticRegression
df_train = pd.read_csv(r'E:\BaiduNetdiskDownload\Datasets\Breast-Cancer\breast-cancer-train.csv')#利用pandas读入数据
df_test =pd.read_csv(r'E:\BaiduNetdiskDownload\Datasets\Breast-Cancer\breast-cancer-test.csv')
#选取ClumpThickness与cell size作为特征,构建测试集中的正负分类样本
df_test_negative = df_test.loc[df_test['Type']==0][['Clump Thickness','Cell Size']]
df_test_positive = df_test.loc[df_test['Type']==1][['Clump Thickness','Cell Size']]
plt.scatter(df_test_negative['Clump Thickness'],df_test_negative['Cell Size'],marker='o',s=200,c='red')
plt.scatter(df_test_positive['Clump Thickness'],df_test_positive['Cell Size'],marker='x',s=150,c='black')
plt.xlabel('Clump Thickness')
plt.ylabel('Cell Size')
plt.show()
#利用numpy中的random函数随机采样直线的截距和系数
intercept =np.random.random([1])
coef =np.rando

本文通过Python的pandas和sklearn库,利用LogisticRegression模型预测乳腺癌数据集中的良性与恶性肿瘤。首先,从CSV文件中加载数据,接着选择'Clump Thickness'和'Cell Size'作为特征,然后分别用随机直线和完整数据训练分类器,并展示分类效果。最终,比较了使用部分样本和全部样本训练的模型在测试集上的准确性。
最低0.47元/天 解锁文章
1239

被折叠的 条评论
为什么被折叠?



