使用LogisticRegression和SGDClassifier对良/恶性肿瘤进行分类,并计算出准确率召回率和F1的值

该博客介绍了如何使用LogisticRegression和SGDClassifier对良/恶性肿瘤数据进行分类。通过数据预处理、训练集和测试集划分,然后应用标准化,最后计算模型的准确率、召回率和F1值。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

# -*- coding: utf-8 -*-
"""
Created on Tue Oct 24 10:08:40 2017


@author: liuyajun
"""


import pandas as pd
import numpy as np
from sklearn.cross_validation import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LogisticRegression
from sklearn.linear_model import SGDClassifier
from sklearn.metrics import classification_report 


column_names = ['Sample code number','Clump Thickness','Uniformity of Cell Size','Uniformity of Cell shape','Marginal Adhesion','Single Epithelial cell Size','Bare Nuclei','Bland Chromation','Normal Nucleoli','Mitoses','Class']#给读入的数据取列明
data = pd.read_csv('https://archive.ics.uci.edu/ml/machine-learning-databases/breast-cancer-wisconsin/breast-cancer-wisconsin.data',names=column_names)#网站上提供对应的数据
data = data.replace(to_replace='?',value=np.nan)#用numpy中的nan来代替数据中的空值(之前使用?来表示空)
data = data.dropna(how='any')#删除所有带有空值的数据
#print(data.shape)#输出删除空值后数据的形状
#使用函数对数据进行切分,训练数据75%,测试数据25%
X_train,X_test,y_train,y_test = train_test_split(data[column_names[1:10]],data[column_names[10]],test_size=0.25,random_state=33)
#检测样本的数量和类型
y_train.value_counts()
y_test.value_counts()
#首先使用线性模型从事良、恶性肿瘤的预测任务
# 1 标准化数据,保证每个维度的特征数据方差为1,均值为0.使得预测结果不会被某些维度过大的特征值主导
ss = StandardScaler()
X_train=ss.fit_transform(X_train)
X_test=ss.transform(X_test)
# 2 初始化Logis提出Regression和SGDClassifier(随机参数梯度估计)
lr = LogisticRegression()
sgdc = SGDClassifier()
#使用LogisticRegression 中的fit方法训练参数
lr.fit(X_train,y_train)
#对测试数据进行预测
lr_y_predict=lr.predict(X_test)
sgdc.fit(X_train,y_train)
sgdc_y_predict=sgdc.predict(X_test)
#利用LogisticRegression模块自带的score获得模型在测试机上的准确性
print('Accuracy of LR Classifier:',lr.score(X_test,y_test))
#利用Classification_report模块获得LogisticRegression的准确率召回率和F1
print(classification_report(y_test,lr_y_predict,target_names=['Benign','Malignant']))#malignant恶性的benign良性的
print('Accuracy of SGD Classifier:',sgdc.score(X_test,y_test))
print(classifier_report(y_test,y_sgdc_test,target_names=['Bengin','Malignant']))

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值