%%% PoPoQQQ :http://blog.youkuaiyun.com/popoqqq/article/details/39252719
题目大意:给定一棵由圆台和圆锥构成的柠檬树,月光以α的夹角平行射向地面,求阴影部分面积
求公切线
#include<cstdio>
#include<cstdlib>
#include<algorithm>
#include<cmath>
#define PI acos(-1.0)
#define EPS (1e-6)
using namespace std;
inline int dcmp(double a,double b){
if (fabs(a-b)<1e-6) return 0;
if (a<b) return -1;
return 1;
}
struct Point{
double x,y;
Point(double x=0,double y=0):x(x),y(y) { }
};
struct Line{
Point A,B;
double k,b;
Line(){
}
Line(Point iA,Point iB){
A=iA; B=iB;
calc();
}
void calc(){
k=(A.y-B.y)/(A.x-B.x);
b=B.y-k*B.x;
}
double f(double x){
if (dcmp(x,A.x)<0 || dcmp(x,B.x)>0) return 0;
return k*x+b;
}
}L[505];
int tot;
struct Circle{
double c,r;
double f(double x){
if (dcmp(c-x,r)>0) return 0;
return sqrt(r*r-(c-x)*(c-x));
}
}C[505];
int n;
inline double F(double x){
double ret=0;
for (int i=1;i<=n;i++)
ret=max(ret,C[i].f(x));
for (int i=1;i<=tot;i++)
ret=max(ret,L[i].f(x));
return ret;
}
inline double Simpson(double l,double mid,double r,double fl,double fm,double fr){
double flm=F((l+mid)/2),fmr=F((mid+r)/2);
double lret=(fl+4*flm+fm)*(mid-l)/6,rret=(fm+4*fmr+fr)*(r-mid)/6,ret=(fl+4*fm+fr)*(r-l)/6;
if (fabs(lret+rret-ret)<EPS)
return ret;
else
return Simpson(l,(l+mid)/2,mid,fl,flm,fm)+Simpson(mid,(mid+r)/2,r,fm,fmr,fr);
}
int main()
{
double l,r,alpha;
freopen("t.in","r",stdin);
freopen("t.out","w",stdout);
scanf("%d%lf",&n,&alpha);
n++; alpha=1/tan(alpha);
for (int i=1;i<=n;i++)
scanf("%lf",&C[i].c),(C[i].c*=alpha)+=C[i-1].c;
for (int i=1;i<n;i++)
scanf("%lf",&C[i].r);
for(int i=1;i<=n;i++)
{
l=min(l,C[i].c-C[i].r);
r=max(r,C[i].c+C[i].r);
}
for (int i=2;i<=n;i++)
{
double Len=C[i].c-C[i-1].c;
if(dcmp(Len,fabs(C[i-1].r-C[i].r))<=0)
continue;
double sin_alpha=(C[i-1].r-C[i].r)/Len;
double cos_alpha=sqrt(1-sin_alpha*sin_alpha);
L[++tot]=Line(Point(C[i-1].c+C[i-1].r*sin_alpha,C[i-1].r*cos_alpha),Point(C[i].c+C[i].r*sin_alpha,C[i].r*cos_alpha));
}
printf("%.2lf\n",2*Simpson(l,(l+r)/2,r,F(l),F((l+r)/2),F(r)));
return 0;
}