Silver Cow Party
Time Limit : 4000/2000ms (Java/Other) Memory Limit : 131072/65536K (Java/Other)
Total Submission(s) : 41 Accepted Submission(s) : 15
One cow from each of N farms (1 ≤ N ≤ 1000) conveniently numbered 1..N is going to attend the big cow party to be held at farm #X (1 ≤ X ≤ N). A total of M (1 ≤M ≤ 100,000) unidirectional (one-way roads connects pairs of farms; road i requires Ti (1 ≤ Ti ≤ 100) units of time to traverse.
Each cow must walk to the party and, when the party is over, return to her farm. Each cow is lazy and thus picks an optimal route with the shortest time. A cow's return route might be different from her original route to the party since roads are one-way.
Of all the cows, what is the longest amount of time a cow must spend walking to the party and back?
Lines 2.. M+1: Line i+1 describes road i with three space-separated integers: Ai, Bi, and Ti. The described road runs from farm Ai to farm Bi, requiring Ti time units to traverse.
4 8 2 1 2 4 1 3 2 1 4 7 2 1 1 2 3 5 3 1 2 3 4 4 4 2 3
10
#include <iostream>
#include <cstdio>
#include <cstring>
void dij();
#define N 1005
#define INF 0x3f3f3f3f
using namespace std;
int n,m,x;
int weight[N][N];
int dist[N];
int vis[N];
int d[N];
int dd[N];
int main ()
{
int i,j,a,b,c,ma,t,temp;
while(~scanf("%d%d%d",&n,&m,&x))
{
int ans;
memset(weight,0x3f,sizeof(weight));
for(i=1;i<=m;i++)
{
scanf("%d%d%d",&a,&b,&c);
weight[a][b]=c;
}
ma=-1;
dij();
for(i=1;i<=n;i++)
d[i]=dist[i];//记录x为起点单源时的各点到x的距离
for(i=1;i<=n;i++)
for(j=i+1;j<=n;j++)
{
temp=weight[i][j];
weight[i][j]=weight[j][i];
weight[j][i]=temp;
}//转置矩阵
dij();
for(i=1;i<=n;i++)
dd[i]=dist[i];//记录x为终点时各点到x的最短距离
for(i=1;i<=n;i++)
{
t=d[i]+dd[i];//一个是以x为起点,一个是以x为终点
if(t>ma&&t<INF)
ma=t;
}
printf("%d\n",ma);
}
return 0;
}
void dij()
{
int i,j,mi,now;
memset(dist, 0x3f,sizeof(dist));
memset(vis,0,sizeof(vis));
dist[x]=0;
for(i=1;i<=n;i++)
{
mi=INF;
for(j=1;j<=n;j++)
if(!vis[j]&&dist[j]<mi)
{
mi=dist[j];
now=j;
}
vis[now]=1;
for(j=1;j<=n;j++)
if(dist[j]>dist[now]+weight[now][j])
dist[j]=dist[now]+weight[now][j];
}
}