T1矩阵赋值
算法分析
记录每行 / 列最后一次修改的值与时间,对于每个位置(i,j)(i,j)(i,j) ,该位置的值仅取决于 iii 行 / 第 jjj 列中最晚的修改。
时间复杂度为 O(nm)O(nm)O(nm)。
#include <bits/stdc++.h>
template < typename T >
inline void read(T &cnt) {
cnt = 0; char ch = getchar(); bool op = 1;
for (; ! isdigit(ch); ch = getchar())
if (ch == '-') op = 0;
for (; isdigit(ch); ch = getchar())
cnt = cnt * 10 + ch - 48;
cnt = op ? cnt : -cnt;
}
const int N = 1e3 + 10;
int n, m, q;
int l[N], h[N], timh[N], timl[N];
int main() {
freopen("matrix.in", "r", stdin);
freopen("matrix.out", "w", stdout);
read(n), read(m), read(q);
for (int i = 1; i <= q; ++ i) { // 记录时间戳
int t, x, y;
read(t), read(x), read(y);
if (t == 1) h[x] = y, timh[x] = i;
if (t == 2) l[x] = y, timl[x] = i;
}
for (int i = 1; i <= n; ++ i) {
for (int j = 1; j <= m; ++ j)
std::cout << ((timh[i] > timl[j]) ? h[i] : l[j]) << ' ';
std::cout << '\n';
}
return 0;
}
T2 统计数字
算法分析
首先有个结论:Rabbit Number 各个数位上的数字一定≤3\le3≤3 。
证明如下:
若数字 xxx 存在某数位 a≥4a≥4a≥4,则它在该位的贡献为 a2a^2a2,而原数的平方会导致该位自乘时进位,贡献变为 a2−10+1<a2a^2-10+1<a^2a2−10+1<a2,进而导致 S(x2)<S(x)∗S(x)S(x^2)<S(x)*S(x)S(x2)<S(x)∗S(x),证毕。
利用上述结论枚举各个数位爆搜即可。
时间复杂度为 O(49)O(4^9)O(49)。
参考程序
#include <bits/stdc++.h>
template < typename T >
inline void read(T &cnt) {
cnt = 0; char ch = getchar(); bool op = 1;
for (; ! isdigit(ch); ch = getchar())
if (ch == '-') op = 0;
for (; isdigit(ch); ch = getchar())
cnt = cnt * 10 + ch - 48;
cnt = op ? cnt : -cnt;
}
int l, r, ans;
inline int S(long long x) {
int res = 0;
while (x) {
res += x % 10;
x /= 10;
}
return res;
}
inline void check(long long x) {
if (S(x) * S(x) == S(x * x)) ans ++;
}
inline void dfs(long long x) { // 爆搜
if (x > r) return;
if (x >= l && x <= r) check(x);
for (int i = (x) ? 0 : 1; i <= 3; ++ i) {
dfs(x * 10 + i);
}
}
int main() {
freopen("rabbit.in", "r", stdin);
freopen("rabbit.out", "w", stdout);
read(l), read(r);
dfs(0);
std::cout << ans << '\n';
return 0;
}
T3 摘果问题
算法分析
将时间当作边权,分两种情况连边:
1、 iii向 fififi 连双向边,边权为欧几里得距离除以速度;
2、 iii向 jjj 连一条单向边(需要满足 xi=xjxi=xjxi=xj 且 yi>yjyi>yjyi>yj),边权为sqrt(2∗(yi−yj)/g)sqrt(2*(yi-yj)/g)sqrt(2∗(yi−yj)/g) 。
跑 Dijkstra 算法求出最短路即可(是否堆优化均可)。
时间复杂度为:O(n2)O(n^2)O(n2)(不进行堆优化) / O(mlogm)O(mlogm)O(mlogm)(进行堆优化,其中 mmm 为边数)。
参考程序
#include <bits/stdc++.h>
template < typename T >
inline void read(T &cnt) {
cnt = 0; char ch = getchar(); bool op = 1;
for (; ! isdigit(ch); ch = getchar())
if (ch == '-') op = 0;
for (; isdigit(ch); ch = getchar())
cnt = cnt * 10 + ch - 48;
cnt = op ? cnt : -cnt;
}
const int N = 5000 + 5;
const int M = 25e6 + 5;
const double INF = 1e9;
int n, v;
int x[N], y[N], f[N];
int head[N], nxt[M], to[M], tot;
double val[M], dis[N];
bool vis[N];
std::priority_queue < std::pair < int, int > > Q;
inline void add(int u, int v, double w) {
nxt[++ tot] = head[u];
head[u] = tot;
to[tot] = v;
val[tot] = w;
}
inline double dist(int i, int j) {
return std::sqrt(1.0 * (x[i] - x[j]) * (x[i] - x[j]) +
1.0 * (y[i] - y[j]) * (y[i] - y[j]));
}
int main() {
freopen("clever.in", "r", stdin);
freopen("clever.out", "w", stdout);
read(n), read(v);
for (int i = 1; i <= n; ++ i)
read(x[i]), read(y[i]), read(f[i]);
for (int i = 1; i <= n; ++ i) { // 分两种情况连边
if (f[i] != 0)
add(i, f[i], dist(i, f[i]) / v),
add(f[i], i, dist(f[i], i) / v);
for (int j = 1; j <= n; ++ j)
if (x[i] == x[j] && y[i] > y[j])
add(i, j, std::sqrt(2.0 * (y[i] - y[j]) / 10));
}
for (int i = 2; i <= n; ++ i)
dis[i] = 1.0 * INF;
Q.push(std::make_pair(0, 1));
while (Q.size()) { // Dijkstra 算法
int u = Q.top().second; Q.pop();
if (vis[u]) continue;
vis[u] = 1;
for (int i = head[u]; i; i = nxt[i]) {
int v = to[i];
if (dis[v] > dis[u] + val[i]) {
dis[v] = dis[u] + val[i];
if (! vis[v])
Q.push(std::make_pair(-dis[v], v));
}
}
}
printf("%.2lf\n", dis[n]);
return 0;
}
T4 阴阳怪气
算法分析
算法一
特殊性质:n≤10n≤10n≤10。
瞎暴搜,乱搞一下就有 303030 分了。
参考程序
#include <bits/stdc++.h>
template < typename T >
inline void read(T &cnt) {
cnt = 0; char ch = getchar(); bool op = 1;
for (; ! isdigit(ch); ch = getchar())
if (ch == '-') op = 0;
for (; isdigit(ch); ch = getchar())
cnt = cnt * 10 + ch - 48;
cnt = op ? cnt : - cnt;
}
const int N = 100100;
int n, m, d;
int a[N];
long long S[N], f[N];
int main() {
freopen("sophistry.in", "r", stdin);
freopen("sophistry.out", "w", stdout);
read(n), read(d), read(m);
for (int i = 1; i <= n; i ++)
read(a[i]);
for (int i = 1; i <= n; i ++) { // 预处理 S 数组
S[i] = S[i - 1];
if (a[i] <= m) S[i] += a[i];
}
for (int i = 1; i <= d + 1; i ++) // 决策集合为空,特殊处理
f[i] = S[i - 1] + a[i];
long long val = 0;
for (int i = d + 2, j = 1; i <= n; i ++, j ++) { // 双指针
if (a[j] > m) val = std::max(val, f[j] - S[j + d]); // 更新决策集合
f[i] = S[i - 1] + a[i] + val; // 直接转移
}
long long ans = 0;
for (int i = 1; i <= n; i ++) // 取最大值
ans = std::max(ans, f[i]);
printf("%lld\n", ans);
return 0;
}