Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below.
For example, given the following triangle
[ [2], [3,4], [6,5,7], [4,1,8,3] ]
The minimum path sum from top to bottom is 11
(i.e., 2 + 3 + 5 + 1 =
11).
Note:
Bonus point if you are able to do this using only O(n) extra space, where n is the total number of rows in the triangle.
class Solution {
private:
int sum;
public:
int minimumTotal(vector<vector<int> > &triangle) {
int n = triangle.size();
if(n==0) return 0;
int f[n];
f[0] = triangle[0][0];
for(int i = 1;i < n;i++)
for(int j = triangle[i].size()-1;j>=0;j--)
{
if(j==triangle[i].size()-1)
f[j] = f[j-1] + triangle[i][j];
else if(j==0)
f[j] = f[j] + triangle[i][j];
else
f[j] = min(f[j],f[j-1]) + triangle[i][j];
}
int ans = INT_MAX;
for(int i = 0;i<n;i++)
if(ans>f[i])
ans = f[i];
return ans;
}
};