抽象代数 · 极小多项式 | 定义 / 性质 / 示例

注:本文为 “有限域 | 极小多项式” 相关。
英文引文,机翻未校。
如有内容异常,请看原文。


Minimal Polynomials

极小多项式

In these notes we continue to develop the theory of finite fields.
在本文中,我们继续发展有限域理论。

Our main goal in this theory is to prove the following classification theorem.
该理论的主要目标是证明以下分类定理。

Theorem Classification of Finite Fields

定理 有限域的分类

  1. If F \mathbb{F} F is a finite field of characteristic p p p, then ∣ F ∣ |F| F is a power of p p p.
    F \mathbb{F} F 是特征为 p p p 的有限域,则 ∣ F ∣ |F| F p p p 的幂。

  2. For every prime p p p and every d ≥ 1 d \geq 1 d1, there exists a finite field with p d p^d pd elements.
    对于任意素数 p p p 和任意 d ≥ 1 d \geq 1 d1,存在一个含有 p d p^d pd 个元素的有限域。

  3. Any two finite fields with the same number of elements are isomorphic.
    任何两个元素个数相同的有限域都是同构的。

Here isomorphic means that two fields have the same algebraic structure.
这里的 “同构” 指两个域具有相同的代数结构。

That is, fields F 1 \mathbb{F}_1 F1 and F 2 \mathbb{F}_2 F2 are isomorphic if there exists a bijection ψ : F 1 → F 2 \psi: \mathbb{F}_1 \to \mathbb{F}_2 ψ:F1F2 satisfying
即,域 F 1 \mathbb{F}_1 F1 F 2 \mathbb{F}_2 F2 同构,若存在双射 ψ : F 1 → F 2 \psi: \mathbb{F}_1 \to \mathbb{F}_2 ψ:F1F2,使得

ψ ( a + b ) = ψ ( a ) + ψ ( b )  and 且 ψ ( a b ) = ψ ( a ) ψ ( b ) \psi (a + b) = \psi (a) + \psi (b) \text{ and 且} \psi (ab) = \psi (a) \psi (b) ψ(a+b)=ψ(a)+ψ(b) and ψ(ab)=ψ(a)ψ(b)

for all a , b ∈ F 1 a, b \in \mathbb{F}_1 a,bF1.

EXAMPLE 1

例 1

The field R [ x ] / ( x 2 + 1 ) \mathbb{R}[x]/(x^2 + 1) R[x]/(x2+1) is isomorphic to the complex numbers, with the isomorphism
R [ x ] / ( x 2 + 1 ) \mathbb{R}[x]/(x^2 + 1) R[x]/(x2+1) 与复数域同构,其同构映射为

ψ : R [ x ] / ( x 2 + 1 ) → C \psi: \mathbb{R}[x]/(x^2 + 1) \to \mathbb{C} ψ:R[x]/(x2+1)C

being the function ψ ( a + b x ) = a + b i \psi (a + bx) = a + bi ψ(a+bx)=a+bi.
该映射定义为 ψ ( a + b x ) = a + b i \psi (a + bx) = a + bi ψ(a+bx)=a+bi

EXAMPLE 2

例 2

Though it is not obvious, the fields
虽然不明显,但域

F 1 = Z 2 [ x ] / ( x 3 + x + 1 )  and 和 F 2 = Z 2 [ y ] / ( y 3 + y 2 + 1 ) \mathbb{F}_1 = \mathbb{Z}_2 [x]/(x^3 + x + 1) \text{ and 和} \mathbb{F}_2 = \mathbb{Z}_2 [y]/(y^3 + y^2 + 1) F1=Z2[x]/(x3+x+1) and F2=Z2[y]/(y3+y2+1)

are isomorphic via the isomorphism ψ : F 1 → F 2 \psi: \mathbb{F}_1 \to \mathbb{F}_2 ψ:F1F2 defined as follows:
是同构的,其同构映射 ψ : F 1 → F 2 \psi: \mathbb{F}_1 \to \mathbb{F}_2 ψ:F1F2 定义如下:

ψ ( 0 ) = 0 ,   ψ ( x ) = y + 1 ,   ψ ( x 2 ) = y 2 + 1 ,   ψ ( x 2 + x ) = y 2 + y \psi (0) = 0, \ \psi (x) = y + 1, \ \psi (x^2) = y^2 + 1, \ \psi (x^2 + x) = y^2 + y ψ(0)=0, ψ(x)=y+1, ψ(x2)=y2+1, ψ(x2+x)=y2+y

ψ ( 1 ) = 1 ,   ψ ( x + 1 ) = y ,   ψ ( x 2 + 1 ) = y 2 ,   ψ ( x 2 + x + 1 ) = y 2 + y + 1 \psi (1) = 1, \ \psi (x + 1) = y, \ \psi (x^2 + 1) = y^2, \ \psi (x^2 + x + 1) = y^2 + y + 1 ψ(1)=1, ψ(x+1)=y, ψ(x2+1)=y2, ψ(x2+x+1)=y2+y+1

This bijection ψ \psi ψ preserves all of the arithmetic operations.
这个双射 ψ \psi ψ 保持所有算术运算。

For example,
例如:

ψ ( x 2 ) + ψ ( x ) = ( y 2 + 1 ) + ( y + 1 ) = y 2 + y = ψ ( x 2 + x ) \psi (x^2) + \psi (x) = (y^2 + 1) + (y + 1) = y^2 + y = \psi (x^2 + x) ψ(x2)+ψ(x)=(y2+1)+(y+1)=y2+y=ψ(x2+x)

and

ψ ( x ) ψ ( x + 1 ) = ( y + 1 ) ( y ) = y 2 + y = ψ ( x 2 + x ) = ψ ( x ( x + 1 ) ) . \psi (x) \psi (x + 1) = (y + 1)(y) = y^2 + y = \psi (x^2 + x) = \psi (x (x + 1)). ψ(x)ψ(x+1)=(y+1)(y)=y2+y=ψ(x2+x)=ψ(x(x+1)).

We begin by associating a polynomial to each element of a finite field.
我们首先将有限域的每个元素与一个多项式关联起来。

Our definition here is a little bit different than the one we used in class, but it is equivalent and we will end up with all the same theorems.
这里的定义与课堂上使用的略有不同,但两者等价,且最终会得到相同的定理。

Definition: Minimal Polynomial

定义:极小多项式
 
Let F \mathbb{F} F be a finite field of characteristic p p p, and let a ∈ F a \in \mathbb{F} aF.
F \mathbb{F} F 是特征为 p p p 的有限域,且 a ∈ F a \in \mathbb{F} aF
 
A minimal polynomial for a a a is an irreducible polynomial m ( x ) ∈ Z p [ x ] m (x) \in \mathbb{Z}_p [x] m(x)Zp[x] such that m ( a ) = 0 m (a) = 0 m(a)=0.
a a a 的极小多项式是一个不可约多项式 m ( x ) ∈ Z p [ x ] m (x) \in \mathbb{Z}_p [x] m(x)Zp[x],满足 m ( a ) = 0 m (a) = 0 m(a)=0

Recall that irreducible polynomials are required to be monic, and therefore a minimal polynomial m ( x ) m (x) m(x) for an element a a a is always a monic polynomial.
注意,不可约多项式要求是首一的,因此元素 a a a 的极小多项式 m ( x ) m (x) m(x) 总是首一多项式。

EXAMPLE 3
例 3

Consider the field Z 3 [ i ] \mathbb{Z}_3 [i] Z3[i], which has characteristic 3.
考虑特征为 3 的域 Z 3 [ i ] \mathbb{Z}_3 [i] Z3[i]

The minimal polynomials in Z 3 [ x ] \mathbb{Z}_3 [x] Z3[x] for the elements 0 , 1 , − 1 ∈ Z 3 [ i ] 0, 1, -1 \in \mathbb{Z}_3 [i] 0,1,1Z3[i] are respectively
Z 3 [ i ] \mathbb{Z}_3 [i] Z3[i] 中元素 0 , 1 , − 1 0, 1, -1 0,1,1 Z 3 [ x ] \mathbb{Z}_3 [x] Z3[x] 中的极小多项式分别为

x ,   x − 1 ,  and 和  x + 1 , x, \ x - 1, \ \text{and 和} \ x + 1, x, x1, and  x+1,

and these are the only elements of Z 3 [ i ] \mathbb{Z}_3 [i] Z3[i] whose minimal polynomials are linear.
且这些是 Z 3 [ i ] \mathbb{Z}_3 [i] Z3[i] 中仅有的极小多项式为线性的元素。

The minimal polynomial for i i i is
i i i 的极小多项式为

m ( x ) = x 2 + 1 , m (x) = x^2 + 1, m(x)=x2+1,

which is irreducible in Z 3 [ x ] \mathbb{Z}_3 [x] Z3[x].
它在 Z 3 [ x ] \mathbb{Z}_3 [x] Z3[x] 中是不可约的。

This is also the minimal polynomial for − i -i i, and indeed x 2 + 1 x^2 + 1 x2+1 factors into ( x − i ) ( x + i ) (x - i)(x + i) (xi)(x+i) over Z 3 [ i ] \mathbb{Z}_3 [i] Z3[i].
这也是 − i -i i 的极小多项式,且在 Z 3 [ i ] \mathbb{Z}_3 [i] Z3[i] 上, x 2 + 1 x^2 + 1 x2+1 确实可分解为 ( x − i ) ( x + i ) (x - i)(x + i) (xi)(x+i)

Finally, the minimal polynomial for both 1 + i 1 + i 1+i and 1 − i 1 - i 1i is
最后, 1 + i 1 + i 1+i 1 − i 1 - i 1i 的极小多项式均为

m ( x ) = ( x − 1 ) 2 + 1 = x 2 + x − 1 m (x) = (x - 1)^2 + 1 = x^2 + x - 1 m(x)=(x1)2+1=x2+x1

and the minimal polynomial for both − 1 + i -1 + i 1+i and − 1 − i -1 - i 1i is
− 1 + i -1 + i 1+i − 1 − i -1 - i 1i 的极小多项式均为

m ( x ) = ( x + 1 ) 2 + 1 = x 2 − x − 1. m (x) = (x + 1)^2 + 1 = x^2 - x - 1. m(x)=(x+1)2+1=x2x1.

EXAMPLE 4

例 4

Let p p p be a prime, let m ( x ) ∈ Z p [ x ] m (x) \in \mathbb{Z}_p [x] m(x)Zp[x] be an irreducible polynomial, and let F \mathbb{F} F be the field
p p p 是素数, m ( x ) ∈ Z p [ x ] m (x) \in \mathbb{Z}_p [x] m(x)Zp[x] 是不可约多项式,且设 F \mathbb{F} F 是域

F = Z p [ x ] / ( m ( x ) ) . \mathbb{F} = \mathbb{Z}_p [x]/(m (x)). F=Zp[x]/(m(x)).

Let a a a denote the residue class of x x x modulo m ( x ) m (x) m(x), i.e., the element of F \mathbb{F} F corresponding to x x x.
a a a 表示 x x x m ( x ) m (x) m(x) 的剩余类,即 F \mathbb{F} F 中与 x x x 对应的元素。

Then m ( a ) = 0 m (a) = 0 m(a)=0 in F \mathbb{F} F, so m m m is the minimal polynomial for a a a.
则在 F \mathbb{F} F 中, m ( a ) = 0 m (a) = 0 m(a)=0,因此 m m m a a a 的极小多项式。

Proposition 1 Polynomials with a a a as a Root

命题 1 以 a a a 为根的多项式

Let F \mathbb{F} F be a finite field of characteristic p p p, let a ∈ F a \in \mathbb{F} aF, and let m ( x ) ∈ Z p [ x ] m (x) \in \mathbb{Z}_p [x] m(x)Zp[x] be a minimal polynomial for a a a.
F \mathbb{F} F 是特征为 p p p 的有限域, a ∈ F a \in \mathbb{F} aF,且 m ( x ) ∈ Z p [ x ] m (x) \in \mathbb{Z}_p [x] m(x)Zp[x] a a a 的极小多项式。

Then for all f ( x ) ∈ Z p [ x ] f (x) \in \mathbb{Z}_p [x] f(x)Zp[x],
则对所有 f ( x ) ∈ Z p [ x ] f (x) \in \mathbb{Z}_p [x] f(x)Zp[x],有

f ( a ) = 0  if and only if 当且仅当  m ( x ) ∣ f ( x ) . f (a) = 0 \text{ if and only if 当且仅当 } m (x) \mid f (x). f(a)=0 if and only if 当且仅当 m(x)f(x).

PROOF

证明

Let 设 f ( x ) ∈ Z p [ x ] f (x) \in \mathbb{Z}_p [x] f(x)Zp[x].

If m ( x ) ∣ f ( x ) m (x) \mid f (x) m(x)f(x), then since m ( a ) = 0 m (a) = 0 m(a)=0 it follows that f ( a ) = 0 f (a) = 0 f(a)=0.
m ( x ) ∣ f ( x ) m (x) \mid f (x) m(x)f(x),则因 m ( a ) = 0 m (a) = 0 m(a)=0,可得 f ( a ) = 0 f (a) = 0 f(a)=0

For the converse, suppose that f ( a ) = 0 f (a) = 0 f(a)=0, and suppose to the contrary that m ( x ) ∤ f ( x ) m (x) \nmid f (x) m(x)f(x).
反之,设 f ( a ) = 0 f (a) = 0 f(a)=0,且假设 m ( x ) ∤ f ( x ) m (x) \nmid f (x) m(x)f(x)

Since m ( x ) m (x) m(x) is irreducible, it follows that m ( x ) m (x) m(x) and f ( x ) f (x) f(x) are relatively prime, so by Bézout’s lemma there exist polynomials b ( x ) , c ( x ) ∈ Z p [ x ] b (x), c (x) \in \mathbb{Z}_p [x] b(x),c(x)Zp[x] such that
由于 m ( x ) m (x) m(x) 不可约,故 m ( x ) m (x) m(x) f ( x ) f (x) f(x) 互素,因此由贝祖引理,存在多项式 b ( x ) , c ( x ) ∈ Z p [ x ] b (x), c (x) \in \mathbb{Z}_p [x] b(x),c(x)Zp[x],使得

b ( x ) f ( x ) + c ( x ) m ( x ) = 1. b (x) f (x) + c (x) m (x) = 1. b(x)f(x)+c(x)m(x)=1.

But since f ( a ) = m ( a ) = 0 f (a) = m (a) = 0 f(a)=m(a)=0, substituting a a a for x x x gives the equation 0 = 1 0 = 1 0=1, a contradiction.
但因 f ( a ) = m ( a ) = 0 f (a) = m (a) = 0 f(a)=m(a)=0,将 x x x 替换为 a a a 可得 0 = 1 0 = 1 0=1,矛盾。

We conclude that m ( x ) ∣ f ( x ) m (x) \mid f (x) m(x)f(x) whenever f ( a ) = 0 f (a) = 0 f(a)=0.
因此,当 f ( a ) = 0 f (a) = 0 f(a)=0 时,必有 m ( x ) ∣ f ( x ) m (x) \mid f (x) m(x)f(x)

For example, according to this proposition, the element i ∈ Z 3 [ i ] i \in \mathbb{Z}_3 [i] iZ3[i] is a root of a polynomial f ( x ) ∈ Z 3 [ x ] f (x) \in \mathbb{Z}_3 [x] f(x)Z3[x] if and only if x 2 + 1 x^2 + 1 x2+1 divides f ( x ) f (x) f(x).
例如,根据该命题, Z 3 [ i ] \mathbb{Z}_3 [i] Z3[i] 中的元素 i i i 是多项式 f ( x ) ∈ Z 3 [ x ] f (x) \in \mathbb{Z}_3 [x] f(x)Z3[x] 的根,当且仅当 x 2 + 1 x^2 + 1 x2+1 整除 f ( x ) f (x) f(x)

It follows from this proposition that the minimal polynomial m ( x ) m (x) m(x) for a a a must be a polynomial of the smallest possible degree that has a a a as a root.
由该命题可知, a a a 的极小多项式 m ( x ) m (x) m(x) 必定是以 a a a 为根的次数最小的多项式。

This was the definition of the minimal polynomial given in class.
这与课堂上给出的极小多项式定义一致。

Corollary 2 Congruence Modulo m ( x ) m (x) m(x)

推论 2 模 m ( x ) m (x) m(x) 同余

Let F \mathbb{F} F be a finite field of characteristic p p p, let a ∈ F a \in \mathbb{F} aF, and let m ( x ) ∈ Z p [ x ] m (x) \in \mathbb{Z}_p [x] m(x)Zp[x] be the minimal polynomial for a a a.
F \mathbb{F} F 是特征为 p p p 的有限域, a ∈ F a \in \mathbb{F} aF,且 m ( x ) ∈ Z p [ x ] m (x) \in \mathbb{Z}_p [x] m(x)Zp[x] a a a 的极小多项式。

Then for all f ( x ) , g ( x ) ∈ Z p [ x ] f (x), g (x) \in \mathbb{Z}_p [x] f(x),g(x)Zp[x],
则对所有 f ( x ) , g ( x ) ∈ Z p [ x ] f (x), g (x) \in \mathbb{Z}_p [x] f(x),g(x)Zp[x],有

f ( a ) = g ( a )  if and only if 当且仅当  f ( x ) ≡ g ( x ) ( m o d m ( x ) ) . f (a) = g (a) \text{ if and only if 当且仅当 } f (x) \equiv g (x) \pmod{m (x)}. f(a)=g(a) if and only if 当且仅当 f(x)g(x)(modm(x)).

PROOF

证明

Let h ( x ) = f ( x ) − g ( x ) h (x) = f (x) - g (x) h(x)=f(x)g(x).
h ( x ) = f ( x ) − g ( x ) h (x) = f (x) - g (x) h(x)=f(x)g(x)

Then f ( a ) = g ( a ) f (a) = g (a) f(a)=g(a) if and only if h ( a ) = 0 h (a) = 0 h(a)=0.
f ( a ) = g ( a ) f (a) = g (a) f(a)=g(a) 当且仅当 h ( a ) = 0 h (a) = 0 h(a)=0

By Proposition 1, this occurs if and only if m ( x ) m (x) m(x) divides h ( x ) h (x) h(x), i.e., if and only if
由命题 1,这等价于 m ( x ) m (x) m(x) 整除 h ( x ) h (x) h(x),即等价于

f ( x ) ≡ g ( x ) ( m o d m ( x ) ) . f (x) \equiv g (x) \pmod{m (x)}. f(x)g(x)(modm(x)).

For example, if f ( x ) f (x) f(x) and g ( x ) g (x) g(x) are polynomials over Z 3 \mathbb{Z}_3 Z3, then
例如,若 f ( x ) f (x) f(x) g ( x ) g (x) g(x) Z 3 \mathbb{Z}_3 Z3 上的多项式,则

f ( i ) = g ( i )  if and only if 当且仅当  f ( x ) ≡ g ( x ) ( m o d x 2 + 1 ) . f (i) = g (i) \text{ if and only if 当且仅当 } f (x) \equiv g (x) \pmod{x^2 + 1}. f(i)=g(i) if and only if 当且仅当 f(x)g(x)(modx2+1).

Proposition 3 Existence and Uniqueness of Minimal Polynomials

命题 3 极小多项式的存在性与唯一性

Let F \mathbb{F} F be a finite field of characteristic p p p, and let a ∈ F a \in \mathbb{F} aF.
F \mathbb{F} F 是特征为 p p p 的有限域,且 a ∈ F a \in \mathbb{F} aF

Then a a a has a unique minimal polynomial in Z p [ x ] \mathbb{Z}_p [x] Zp[x].
a a a Z p [ x ] \mathbb{Z}_p [x] Zp[x] 中有唯一的极小多项式。

PROOF

证明

Let 设 n = ∣ F ∣ n = |\mathbb{F}| n=F.

By Fermat’s little theorem for fields, we know that a n = a a^n = a an=a, and hence a a a is a root of the polynomial x n − x x^n - x xnx.
由域上的费马小定理,可知 a n = a a^n = a an=a,因此 a a a 是多项式 x n − x x^n - x xnx 的根。

Then a a a must be a root of some irreducible factor of x n − x x^n - x xnx, and therefore a a a has at least one minimal polynomial m ( x ) m (x) m(x).
a a a 必定是 x n − x x^n - x xnx 的某个不可约因子的根,因此 a a a 至少有一个极小多项式 m ( x ) m (x) m(x)

For uniqueness, suppose that m 1 ( x ) m_1 (x) m1(x) and m 2 ( x ) m_2 (x) m2(x) are minimal polynomials for a a a.
关于唯一性,设 m 1 ( x ) m_1 (x) m1(x) m 2 ( x ) m_2 (x) m2(x) 都是 a a a 的极小多项式。

Then by Proposition 1 we know that m 1 ( x ) ∣ m 2 ( x ) m_1 (x) \mid m_2 (x) m1(x)m2(x) and m 2 ( x ) ∣ m 1 ( x ) m_2 (x) \mid m_1 (x) m2(x)m1(x), and since m 1 ( x ) m_1 (x) m1(x) and m 2 ( x ) m_2 (x) m2(x) are monic it follows that m 1 ( x ) = m 2 ( x ) m_1 (x) = m_2 (x) m1(x)=m2(x).
由命题 1,可知 m 1 ( x ) ∣ m 2 ( x ) m_1 (x) \mid m_2 (x) m1(x)m2(x) m 2 ( x ) ∣ m 1 ( x ) m_2 (x) \mid m_1 (x) m2(x)m1(x),又因 m 1 ( x ) m_1 (x) m1(x) m 2 ( x ) m_2 (x) m2(x) 都是首一多项式,故 m 1 ( x ) = m 2 ( x ) m_1 (x) = m_2 (x) m1(x)=m2(x)

Generators for Fields

域的生成元

There is a notion of a generator for a field.
域存在生成元的概念。

This is similar to, but distinct from, the notion of a primitive element.
它与本原元的概念相似,但并不相同。

Definition: Generator for a Field

定义:域的生成元
 
Let F \mathbb{F} F be a finite field of characteristic p p p.
F \mathbb{F} F 是特征为 p p p 的有限域。
 
An element a ∈ F a \in \mathbb{F} aF is called a generator for F \mathbb{F} F if the set
F \mathbb{F} F 中的元素 a a a 满足集合
 
{ f ( a ) ∣ f ( x ) ∈ Z p [ x ] } \{f (a) \mid f (x) \in \mathbb{Z}_p [x]\} {f(a)f(x)Zp[x]}
 
is equal to F \mathbb{F} F.
等于 F \mathbb{F} F,则称 a a a F \mathbb{F} F 的生成元。

That is, a a a is a generator for F \mathbb{F} F if every element of F \mathbb{F} F can be written as a polynomial involving a a a.
即,若 F \mathbb{F} F 中的每个元素都可表示为含 a a a 的多项式,则 a a a F \mathbb{F} F 的生成元。

EXAMPLE 5 Generators for Z 3 [ i ] \mathbb{Z}_3 [i] Z3[i]

例 5 Z 3 [ i ] \mathbb{Z}_3 [i] Z3[i] 的生成元

The element i i i is a generator for Z 3 [ i ] \mathbb{Z}_3 [i] Z3[i], since each element of Z 3 [ i ] \mathbb{Z}_3 [i] Z3[i] can be written as a linear polynomial a + b i a + bi a+bi involving i i i.
元素 i i i Z 3 [ i ] \mathbb{Z}_3 [i] Z3[i] 的生成元,因为 Z 3 [ i ] \mathbb{Z}_3 [i] Z3[i] 中的每个元素都可表示为含 i i i 的线性多项式 a + b i a + bi a+bi

The element 1 + i 1 + i 1+i is also a generator for Z 3 [ i ] \mathbb{Z}_3 [i] Z3[i],
元素 1 + i 1 + i 1+i 也是 Z 3 [ i ] \mathbb{Z}_3 [i] Z3[i] 的生成元,

since
因为

a + b i = b ( i + 1 ) + ( a − b ) a + bi = b (i + 1) + (a - b) a+bi=b(i+1)+(ab)

for any element a + b i ∈ Z 3 [ i ] a + bi \in \mathbb{Z}_3 [i] a+biZ3[i].
Z 3 [ i ] \mathbb{Z}_3 [i] Z3[i] 中的任意元素 a + b i a + bi a+bi,有

However, 1 1 1 is not a generator for Z 3 [ i ] \mathbb{Z}_3 [i] Z3[i], since f ( 1 ) ∈ { 0 , 1 , 2 } f (1) \in \{0, 1, 2\} f(1){0,1,2} for any polynomial f ( x ) ∈ Z 3 [ x ] f (x) \in \mathbb{Z}_3 [x] f(x)Z3[x].
然而, 1 1 1 不是 Z 3 [ i ] \mathbb{Z}_3 [i] Z3[i] 的生成元,因为对任意多项式 f ( x ) ∈ Z 3 [ x ] f (x) \in \mathbb{Z}_3 [x] f(x)Z3[x] f ( 1 ) ∈ { 0 , 1 , 2 } f (1) \in \{0, 1, 2\} f(1){0,1,2}

Indeed, none of the elements 0 , 1 , 2 0, 1, 2 0,1,2 of the prime subfield is a generator for Z 3 [ i ] \mathbb{Z}_3 [i] Z3[i], but it is possible to show that each of the remaining six elements is a generator for Z 3 [ i ] \mathbb{Z}_3 [i] Z3[i].
实际上,素子域中的元素 0 , 1 , 2 0, 1, 2 0,1,2 都不是 Z 3 [ i ] \mathbb{Z}_3 [i] Z3[i] 的生成元,但可以证明其余 6 个元素都是 Z 3 [ i ] \mathbb{Z}_3 [i] Z3[i] 的生成元。

Proposition 4 Primitive Elements Generate

命题 4 本原元是生成元

Every finite field F \mathbb{F} F has at least one generator.
每个有限域 F \mathbb{F} F 至少有一个生成元。

In particular, any primitive element of F × \mathbb{F}^\times F× is a generator for F \mathbb{F} F.
特别地, F × \mathbb{F}^\times F× 的任何本原元都是 F \mathbb{F} F 的生成元。

PROOF

证明

Let F \mathbb{F} F be a finite field, and let a ∈ F × a \in \mathbb{F}^\times aF× be a primitive element.
F \mathbb{F} F 是有限域,且 a ∈ F × a \in \mathbb{F}^\times aF× 是本原元。

Then every nonzero element of F \mathbb{F} F is a power of a a a, and can hence be written as f ( a ) f (a) f(a) for some polynomial f ( x ) = x k f (x) = x^k f(x)=xk.
F \mathbb{F} F 中的每个非零元素都是 a a a 的幂,因此可表示为某个多项式 f ( x ) = x k f (x) = x^k f(x)=xk 对应的 f ( a ) f (a) f(a)

Finally, the element 0 ∈ F 0 \in \mathbb{F} 0F can be written as z ( a ) z (a) z(a), where z ( x ) z (x) z(x) is the zero polynomial.
最后, F \mathbb{F} F 中的元素 0 0 0 可表示为 z ( a ) z (a) z(a),其中 z ( x ) z (x) z(x) 是零多项式。

We now prove that the structure of a finite field can be determined from the minimal polynomial for any generator.
我们现在证明,有限域的结构可由其任意生成元的极小多项式确定。

Theorem 5 Structure of Finite Fields

定理 5 有限域的结构

Let F \mathbb{F} F be a finite field of characteristic p p p, and let a a a be a generator for F \mathbb{F} F.
F \mathbb{F} F 是特征为 p p p 的有限域,且 a a a F \mathbb{F} F 的生成元。

Then F \mathbb{F} F is isomorphic to the field
F \mathbb{F} F 同构于域

Z p [ x ] / ( m ( x ) ) \mathbb{Z}_p [x]/(m (x)) Zp[x]/(m(x))

where m ( x ) m (x) m(x) is the minimal polynomial for a a a.
其中 m ( x ) m (x) m(x) a a a 的极小多项式。

PROOF

证明

Let ψ : Z p [ x ] / ( m ( x ) ) → F \psi: \mathbb{Z}_p [x]/(m (x)) \to \mathbb{F} ψ:Zp[x]/(m(x))F be the function
ψ : Z p [ x ] / ( m ( x ) ) → F \psi: \mathbb{Z}_p [x]/(m (x)) \to \mathbb{F} ψ:Zp[x]/(m(x))F 为函数

ψ ( f ( x ) ) = f ( a ) . \psi (f (x)) = f (a). ψ(f(x))=f(a).

That is, ψ \psi ψ maps the residue class of each polynomial f ( x ) f (x) f(x) to the element f ( a ) ∈ F f (a) \in \mathbb{F} f(a)F.
即, ψ \psi ψ 将每个多项式 f ( x ) f (x) f(x) 的剩余类映射到 F \mathbb{F} F 中的元素 f ( a ) f (a) f(a)

From Corollary 2, we know that
由推论 2,可知

f ( x ) ≡ g ( x ) ( m o d m ( x ) )  if and only if 当且仅当  f ( a ) = g ( a ) f (x) \equiv g (x) \pmod{m (x)} \text{ if and only if 当且仅当 } f (a) = g (a) f(x)g(x)(modm(x)) if and only if 当且仅当 f(a)=g(a)

for all f ( x ) , g ( x ) ∈ Z p [ x ] f (x), g (x) \in \mathbb{Z}_p [x] f(x),g(x)Zp[x], and thus ψ \psi ψ is both well-defined and one-to-one.
对所有 f ( x ) , g ( x ) ∈ Z p [ x ] f (x), g (x) \in \mathbb{Z}_p [x] f(x),g(x)Zp[x] 成立,因此 ψ \psi ψ 是良定义的且是单射。

Moreover, since a a a is a generator for F \mathbb{F} F, the image of ψ \psi ψ is all of F \mathbb{F} F, and therefore ψ \psi ψ is a bijection.
此外,因 a a a F \mathbb{F} F 的生成元, ψ \psi ψ 的像集是整个 F \mathbb{F} F,故 ψ \psi ψ 是双射。

Finally, we have
最后,对所有 f ( x ) f (x) f(x) g ( x ) g (x) g(x),有

ψ ( f ( x ) + g ( x ) ) = f ( a ) + g ( a ) = ψ ( f ( x ) ) + ψ ( g ( x ) ) \psi (f (x) + g (x)) = f (a) + g (a) = \psi (f (x)) + \psi (g (x)) ψ(f(x)+g(x))=f(a)+g(a)=ψ(f(x))+ψ(g(x))

and

ψ ( f ( x ) g ( x ) ) = f ( a ) g ( a ) = ψ ( f ( x ) ) ψ ( g ( x ) ) \psi (f (x) g (x)) = f (a) g (a) = \psi (f (x)) \psi (g (x)) ψ(f(x)g(x))=f(a)g(a)=ψ(f(x))ψ(g(x))

for all f ( x ) f (x) f(x) and g ( x ) g (x) g(x), which proves that ψ \psi ψ is an isomorphism.
这表明 ψ \psi ψ 是同构映射。

EXAMPLE 6 Structure of Z 3 [ i ] \mathbb{Z}_3 [i] Z3[i]

例 6 Z 3 [ i ] \mathbb{Z}_3 [i] Z3[i] 的结构

As we have seen, the minimal polynomial for the element i ∈ Z 3 [ i ] i \in \mathbb{Z}_3 [i] iZ3[i] is
如前所述, Z 3 [ i ] \mathbb{Z}_3 [i] Z3[i] 中元素 i i i 的极小多项式为

m ( x ) = x 2 + 1. m (x) = x^2 + 1. m(x)=x2+1.

Since i i i is a generator for Z 3 [ i ] \mathbb{Z}_3 [i] Z3[i], it follows that Z 3 [ i ] \mathbb{Z}_3 [i] Z3[i] is isomorphic to Z 3 [ x ] / ( x 2 + 1 ) \mathbb{Z}_3 [x]/(x^2 + 1) Z3[x]/(x2+1).
由于 i i i Z 3 [ i ] \mathbb{Z}_3 [i] Z3[i] 的生成元,因此 Z 3 [ i ] \mathbb{Z}_3 [i] Z3[i] 同构于 Z 3 [ x ] / ( x 2 + 1 ) \mathbb{Z}_3 [x]/(x^2 + 1) Z3[x]/(x2+1)

Similarly, recall that 1 + i 1 + i 1+i is also a generator for Z 3 [ i ] \mathbb{Z}_3 [i] Z3[i].
类似地,已知 1 + i 1 + i 1+i 也是 Z 3 [ i ] \mathbb{Z}_3 [i] Z3[i] 的生成元。

The minimal polynomial for 1 + i 1 + i 1+i is
1 + i 1 + i 1+i 的极小多项式为

m ( x ) = ( x − 1 ) 2 + 1 = x 2 + x − 1 , m (x) = (x - 1)^2 + 1 = x^2 + x - 1, m(x)=(x1)2+1=x2+x1,

so it follows that Z 3 [ i ] \mathbb{Z}_3 [i] Z3[i] is also isomorphic to Z 3 [ x ] / ( x 2 + x − 1 ) \mathbb{Z}_3 [x]/(x^2 + x - 1) Z3[x]/(x2+x1).
因此 Z 3 [ i ] \mathbb{Z}_3 [i] Z3[i] 也同构于 Z 3 [ x ] / ( x 2 + x − 1 ) \mathbb{Z}_3 [x]/(x^2 + x - 1) Z3[x]/(x2+x1)

As a consequence of Theorem 5, we now know the possible sizes of a finite field.
由定理 5 可推出有限域可能的规模。

Corollary 6 Sizes of Finite Fields

推论 6 有限域的规模

If F \mathbb{F} F is a finite field of characteristic p p p, then ∣ F ∣ |F| F is a power of p p p.
F \mathbb{F} F 是特征为 p p p 的有限域,则 ∣ F ∣ |F| F p p p 的幂。

PROOF

证明

Let a a a be a generator for F \mathbb{F} F.
a a a F \mathbb{F} F 的生成元。

By Theorem 5, the field F \mathbb{F} F is isomorphic to
由定理 5,域 F \mathbb{F} F 同构于

Z p [ x ] / ( m ( x ) ) \mathbb{Z}_p [x]/(m (x)) Zp[x]/(m(x))

where m ( x ) m (x) m(x) is the minimal polynomial for a a a.
其中 m ( x ) m (x) m(x) a a a 的极小多项式。

Then F \mathbb{F} F has p d p^d pd elements, where d d d is the degree of m ( x ) m (x) m(x).
F \mathbb{F} F p d p^d pd 个元素,其中 d d d m ( x ) m (x) m(x) 的次数。

More About Generators

关于生成元的更多内容

We would like to prove a few more facts about generators, which will be useful later.
我们将证明关于生成元的另外几个事实,这些事实在后续会有用。

Definition: Degree of an Element

定义:元素的次数
 
Let F \mathbb{F} F be a finite field.
F \mathbb{F} F 是有限域。

The degree of an element a ∈ F a \in \mathbb{F} aF is the degree of the minimal polynomial for a a a.
F \mathbb{F} F 中元素 a a a 的次数是其极小多项式的次数。

For example, an element of F \mathbb{F} F has degree 1 if and only if it lies in the prime subfield of F \mathbb{F} F.
例如, F \mathbb{F} F 中元素的次数为 1 当且仅当该元素属于 F \mathbb{F} F 的素子域。

We can use degree to give a nice characterization of the generators of F \mathbb{F} F.
我们可利用次数来刻画 F \mathbb{F} F 的生成元。

Proposition 7 Degrees of the Generators

命题 7 生成元的次数

Let F \mathbb{F} F be a finite field with p d p^d pd elements, where p p p is prime and d ≥ 1 d \geq 1 d1.
F \mathbb{F} F 是含有 p d p^d pd 个元素的有限域,其中 p p p 是素数且 d ≥ 1 d \geq 1 d1

Then the generators for F \mathbb{F} F are precisely the elements of F \mathbb{F} F that have degree d d d.
F \mathbb{F} F 的生成元恰好是 F \mathbb{F} F 中次数为 d d d 的元素。

PROOF

证明

Let a ∈ F a \in \mathbb{F} aF, let m ( x ) ∈ Z p [ x ] m (x) \in \mathbb{Z}_p [x] m(x)Zp[x] be the minimal polynomial for a a a, and consider the set
a ∈ F a \in \mathbb{F} aF m ( x ) ∈ Z p [ x ] m (x) \in \mathbb{Z}_p [x] m(x)Zp[x] a a a 的极小多项式,考虑集合

{ f ( a ) ∣ f ( x ) ∈ Z p [ x ] } . \{f (a) \mid f (x) \in \mathbb{Z}_p [x]\}. {f(a)f(x)Zp[x]}.

By Corollary 2, the elements of this set are in one-to-one correspondence with the elements of Z p [ x ] / ( m ( x ) ) \mathbb{Z}_p [x]/(m (x)) Zp[x]/(m(x)).
由推论 2,该集合中的元素与 Z p [ x ] / ( m ( x ) ) \mathbb{Z}_p [x]/(m (x)) Zp[x]/(m(x)) 中的元素一一对应。

In particular, this set has precisely p k p^k pk elements, where k k k is the degree of m ( x ) m (x) m(x).
特别地,该集合恰有 p k p^k pk 个元素,其中 k k k m ( x ) m (x) m(x) 的次数。

Then this set is equal to all of F \mathbb{F} F if and only if k = d k = d k=d.
则该集合等于整个 F \mathbb{F} F 当且仅当 k = d k = d k=d

For example, this proposition proves our previous assertion that each of the six elements of Z 3 [ i ] \mathbb{Z}_3 [i] Z3[i] of degree 2 is a generator for Z 3 [ i ] \mathbb{Z}_3 [i] Z3[i].
例如,该命题证明了我们之前的结论: Z 3 [ i ] \mathbb{Z}_3 [i] Z3[i] 中 6 个次数为 2 的元素都是 Z 3 [ i ] \mathbb{Z}_3 [i] Z3[i] 的生成元。

Next we would like to investigate the action of the Frobenius automorphism on the generators.
接下来我们考察弗罗贝尼乌斯自同构在生成元上的作用。

Proposition 8 Periods of the Generators

命题 8 生成元的周期

Let F \mathbb{F} F be a field with p d p^d pd elements, where p p p is prime and d ≥ 1 d \geq 1 d1.
F \mathbb{F} F 是含有 p d p^d pd 个元素的域,其中 p p p 是素数且 d ≥ 1 d \geq 1 d1

Let a a a be a generator for F \mathbb{F} F, and let φ : F → F \varphi: \mathbb{F} \to \mathbb{F} φ:FF be the Frobenius automorphism.
a a a F \mathbb{F} F 的生成元, φ : F → F \varphi: \mathbb{F} \to \mathbb{F} φ:FF 是弗罗贝尼乌斯自同构。

Then for all n ∈ N n \in \mathbb{N} nN,
则对所有 n ∈ N n \in \mathbb{N} nN,有

φ n ( a ) = a if and only if 当且仅当  d ∣ n . \varphi^n (a) = a \quad \text{if and only if 当且仅当 } \quad d \mid n. φn(a)=aif and only if 当且仅当 dn.

PROOF

证明

It suffices to prove that φ d ( a ) = a \varphi^d (a) = a φd(a)=a and that φ k ( a ) ≠ a \varphi^k (a) \neq a φk(a)=a for 1 ≤ k < d 1 \leq k < d 1k<d.
只需证明 φ d ( a ) = a \varphi^d (a) = a φd(a)=a 且对 1 ≤ k < d 1 \leq k < d 1k<d,有 φ k ( a ) ≠ a \varphi^k (a) \neq a φk(a)=a

The first statement follows from Fermat’s little theorem for fields, since
第一个结论由域上的费马小定理可得,因为

φ d ( a ) = a p d = a . \varphi^d (a) = a^{p^d} = a. φd(a)=apd=a.

To prove the second statement, suppose to the contrary that φ k ( a ) = a \varphi^k (a) = a φk(a)=a for some k < d k < d k<d.
为证明第二个结论,假设存在 k < d k < d k<d 使得 φ k ( a ) = a \varphi^k (a) = a φk(a)=a

Then for any polynomial f ( x ) ∈ Z p [ x ] f (x) \in \mathbb{Z}_p [x] f(x)Zp[x], we have
则对任意多项式 f ( x ) ∈ Z p [ x ] f (x) \in \mathbb{Z}_p [x] f(x)Zp[x],有
φ k ( f ( a ) ) = f ( φ k ( a ) ) = f ( a ) . \varphi^k (f (a)) = f (\varphi^k (a)) = f (a). φk(f(a))=f(φk(a))=f(a).

Since a a a is a generator for F \mathbb{F} F, we conclude that φ k ( b ) = b \varphi^k (b) = b φk(b)=b for all b ∈ F b \in \mathbb{F} bF.
a a a F \mathbb{F} F 的生成元,故对所有 b ∈ F b \in \mathbb{F} bF,有 φ k ( b ) = b \varphi^k (b) = b φk(b)=b

But this is impossible, since x p k − x x^{p^k} - x xpkx has at most p k p^k pk different roots in F \mathbb{F} F.
但这是不可能的,因为 x p k − x x^{p^k} - x xpkx F \mathbb{F} F 中至多有 p k p^k pk 个不同的根。

Incidentally, it is possible to prove that for any element a a a of a finite field, the degree of a a a is equal to the smallest positive number k k k for which φ k ( a ) = a \varphi^k (a) = a φk(a)=a, but we will not need this more general version.
顺便说一下,可以证明:对有限域中的任意元素 a a a,其次数等于使得 φ k ( a ) = a \varphi^k (a) = a φk(a)=a 的最小正整数 k k k,但我们不需要这个更一般的结论。


via:

MinimalPolynomials.pdf
https://e.math.cornell.edu/people/belk/numbertheory/MinimalPolynomials.pdf

【四轴飞行器】非线性三自由度四轴飞行器模拟器研究(Matlab代码实现)内容概要:本文围绕非线性三自由度四轴飞行器模拟器的研究展开,重点介绍了基于Matlab的建模与仿真方法。通过对四轴飞行器的动力学特性进行分析,构建了非线性状态空间模型,并实现了姿态与位置的动态模拟。研究涵盖了飞行器运动方程的建立、控制系统设计及数值仿真验证等环节,突出非线性系统的精确建模与仿真优势,有助于深入理解飞行器在复杂工况下的行为特征。此外,文中还提到了多种配套技术如PID控制、状态估计与路径规划等,展示了Matlab在航空航天仿真中的综合应用能力。; 适合人群:具备一定自动控制理论基础和Matlab编程能力的高校学生、科研人员及从事无人机系统开发的工程技术人员,尤其适合研究生及以上层次的研究者。; 使用场景及目标:①用于四轴飞行器控制系统的设计与验证,支持算法快速原型开发;②作为教学工具帮助理解非线性动力学系统建模与仿真过程;③支撑科研项目中对飞行器姿态控制、轨迹跟踪等问题的深入研究; 阅读建议:建议读者结合文中提供的Matlab代码进行实践操作,重点关注动力学建模与控制模块的实现细节,同时可延伸学习文档中提及的PID控制、状态估计等相关技术内容,以全面提升系统仿真与分析能力。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值