Periodic Table | 元素周期表进化史

注:本文为 “元素周期表” 相关合辑。
图片清晰度受引文原图所限。
略作重排,如有内容异常,请看原文。


元素周期表进化史

2021/10/19
化学部落~~格格
元素周期表,原子构造
Author: CS editor

译自 Chem-Station 网站日本版 原文链接:周期表の歴史を振り返る

翻译:炸鸡 校对:Jiao Jiao

1869 年门捷列夫提出元素周期表,元素周期表至今已经有 156 年的历史了。本篇内容就来带大家回顾一下门捷列夫对化学做出的贡献以及元素周期表的演变历史。

元素周期表是性质相似的元素有序排列而成的表

1869 年,俄国化学家门捷列夫将当时已经发现的 63 种元素根据原子量大小排列,性质相似的元素排列在一起制成一张表,这张表就是元素周期表的雏形。

来看下门捷列夫最早提出的元素周期表吧。

img

基于原子量和化学性质的排列表,等号后面的数字表示原子量(图片来自维基百科)

这个最早期的元素周期表里元素竟然是纵向排列的 ?!
从表中我们可以看到原子量小的元素在左上位置,越往下原子量逐渐增加,再起一列是一个新周期,因此,在这个早期元素周期表中我们现在说的主族元素是横向排列的而非纵向。

元素周期表作为理解元素性质的工具而产生

在门捷列夫早期的元素周期表中,铝 Al 和硅 Si 右边是 “?”(上图中间附近)。那里的位置属于现在发现的镓 Ga 和锗 Ge。当时尚未发现镓 Ga 和锗 Ge,所以门捷列夫当时预计那里应该会有未发现的元素并给这两种当时尚未发现的元素取名为镓 Ga 和锗 Ge,还预测了这两种元素的性质。

img

门捷列夫对镓 Ga 的的性质预测和镓 Ga 的实际性质。(表中内容来自 Chemistry LibreText)。门捷列夫预测其单质熔点很低,实际上也确实如此:镓 30 摄氏度左右就会变成液体。一般的金属都是固体,所以金属熔点普遍很高。门捷列夫对镓 Ga 做出 “熔点低” 这一预测听起来很不可思议,但却是准确的。

在门捷列夫提出这张早期元素周期表之前并非没有元素一览表。门捷列夫的优秀之处在于他在制作周期表时注意到了有些位置应是空白的,认为那里应该有当时尚未发现的元素并准确预测了空白位置元素的存在和性质。周期表可以说是作为科学家理解元素性质的强有力的武器而 C 位出道的吧。

门捷列夫对元素周期表的改善

img

当然了,门捷列夫最早提出的元素周期表还是有几处地方需要完善。在这张早期元素周期表中没有稀有气体元素一行(现行的元素周期表里稀有气体元素是排成一列),因为当时稀有气体元素尚未被发现。还有,为了保证性质相似的元素排列在一起,有些元素并没有遵守按原子量大小顺序排列的规则,比如碲 Te 和碘 I,尽管碲的原子量更大,但碲排在碘的前面。原因是碘 I 具有明显的卤素元素(溴,氯)的特征。出现这样不遵守原子量大小顺序的排列方式是因为元素本就应该按照核质子数排列而非原子量大小。鉴于当时原子的结构还不清楚,所以出现这种排列上的特殊情况并不是门捷列夫的失误。后来随着原子结构逐渐明了,元素排列顺序改成按核质子数排列了,碲 Te 和碘 I 的特殊排列现象也得到了解释。可以说从此元素周期表的排列顺序得到了物理学上的支持。

随着时代发展的元素周期表

随着新元素的发现和原子结构的阐明,周期表的形式也在不断地发展。让我们来看看它的发展情况。下图是门捷列耶夫发布的第二版元素周期表。在这张表中元素的排列变成了横向。注意到在表格顶部的说明栏中有 RH 和 RO 的符号。这些对应着所谓的族号,族是用属于该列的元素的氢化物 RH 和氧化物 RO 的组成式来命名的。

img

门捷列夫发布的第二版元素周期表。(图片来自维基百科 )

加了亚族的短周期型的元素周期表

以门捷列夫的第二版元素周期表为基础,添加了稀有气体元素、镧系元素、锕系元素的短周期型元素周期表诞生了。这个短周期型元素周期表中有 1 族(I 族)到 8 族(VIII 族),每个族再用 A,B 亚族划分。现在的周期表中的 1,2,13……17 族在短周期型元素周期表中对应 IA,IIA,IIIA,……,VII 族,现在的 3,4,……,11,12 族在短周期型元素周期表中对应 IIIB,IVB,……,IB,IIB 族。虽然这样看有点复杂,但是这个元素周期表里纵向的元素还是性质相似的。

img

1990 年代使用的元素周期表。I 到 VIII 的族被进一步划分为 A 和 B 亚族。

Bayley 和 Bohr 的金字塔型元素周期表反映了原子结构

在下图这张金字塔元素周期表的第三周期到第四周期过渡的时候(图中表现为 II 到 III 过渡),出现了分裂,裂分为典型元素区和过渡金属元素区。当 Bayley(贝利)提出这个金字塔型元素周期表时,人们尚不清楚原子的结构,因此我们不知道 Bayley 是否有划分元素区块的意图。但后来,以设计出原子模型而闻名的 Bohr(玻尔)也提出了金字塔型元素周期表。为了在周期表中反映原子的结构,玻尔可能意识到需要将短周期型元素周期表的亚族分离出来。周期表作为一种不仅帮助了解元素性质,还帮助了解原子结构的工具正在逐步发展。

img

Bayley 提出的元素周期表。图片来自文献 [5]

但是这份金字塔型元素周期表初看很难看出族与族之间的联系。比如通过从钠 Na 延伸的线,可以导出钾 K,K 和 Na 一样都是碱金属元素。钠在金字塔的边缘,所以不用太费劲就能追踪到钾,但是从里面的磷 P 等寻找下一个周期的元素,就像追踪错综复杂的电线一样难找。沿着 Na 延伸的线,我们还可以找到和 Na 八竿子也打不着的 Cu。在门捷列夫的元素周期表中,Na 和 Cu 是以亚属的形式区分的,但在金字塔型元素周期表中,给人的印象是族之间的联系反而变弱了。

img

在金字塔型元素周期表里找寻族与族之间的联系简直太难了

长周期型周期表解决了亚族问题的同时还区分了元素区

随着金字塔型元素周期表被提出,后续也有多种元素周期表被陆陆续续提出,1950 年代,短周期型元素周期表是最常被使用的。那么我们现在熟知的并且在教科书里广泛出现的那张中间有凹槽的元素周期表是什么时候诞生的呢?令人颇感惊讶的是它其实早在 1923 年就诞生了9。下图为我们现在熟悉的元素周期表的前身。除了稀有气体元素位于左端,硼 B 和铝 Al 位于凹槽左侧外,形状与现在的元素周期表基本一致。元素族的名称也继承了短周期型元素周期表的名称,1-8 族(I–VIII)分为 A 和 B 亚族。

img

Deming 的周期表 图片来自 meta-synthesis9

那么问题来了,这个长周期型元素周期表是怎么由它之前的元素周期表演变而来的呢?从金字塔型元素周期表出发,将 2 族和 3 族切断,然后将 2 族和 3 族的元素横向排列就得到了长周期型元素周期表;从短周期型元素周期表出发,把 IB, IIB, IIIA–VIIA 族全部迁移到 VIII 族的右边。短周期和长周期虽然很相像,但是完成转变工程量还是很大的。长周期型元素周期表没有削弱元素横向纵向的联系,并且还表现出了金字塔型元素周期表里的元素区。

img

元素周期表变形过程分析

长周期型元素周期表是怎么变宽的?

长周期型元素周期表并不是一下子变长的。前面提到长周期型元素周期表最早于 1923 年提出。那么提出后,它是怎么被世人接受并认可的呢?答案是药品公司的宣传册上大量印刷这个元素周期表,并大量发散,这样人们就接受了这个元素周期表的存在 4。如果某个元素周期表被教科书采用它的大众知名度就会极大地提升。经过一遍遍修改,终于在 1950 年,长周期型元素周期表被教科书正式采用,出现在了教科书上 4。

然而短周期型元素周期表直到上世纪 80 年代后期仍在使用。毕竟考虑到从短周期表过渡到长周期表,变化还是很巨大的,人们自然需要多花点时间接受。但是我们不得不思考一个问题:究竟是什么让科学家们抛弃了使用近 100 年的短周期元素周期表而转向使用周期元素周期表?

短周期元素周期表为什么退出了历史舞台?

笔者费尽周折调查一番,发现并没有一份明确的声明宣布废止短周期元素周期表。但是 IUPAC 在 1988 年公布了元素周期表综列的 1 至 18 族的名称6。正是这个决定把短周期元素周期表推向了废弃的边缘。如果元素族要凑满 18 个,就只有使用长周期型元素周期表来命名元素族了。但是这引出了一个新问题。

img

1988 年 IUPAC 对元素族名做出改革,自此元素亚族消失

为什么要废除亚族,为什么元素族的名称要变成 1-18 族?

上世纪后半叶,短周期元素周期表与长周期元素周期表并用,亚族(A 和 B 族)的命名方法因不同的元素周期表而异,十分混乱 4, 6。如下图所示,从 III 族到 VII 族,无论亚族如何分配,性质相似的元素都可以纵向对齐,周期律不会出现不妥。从 III 族到 VII 族,亚族 A 和 B 的取法是任意的。

img

混乱的亚族命名。试试看找找两个元素周期表的不同之处!

虽然族名的取法是任意的,但是对初学元素周期表的学生而言,不同参考书上会因为采用的元素周期表不同,族名取法也不一样,这会给初学者带来极大的困扰。在这样混乱的族名命名情况下,化学界开始审议变更族名,1988 年 IUPAC 正式规范了 1-18 族的名称。

2016 年元素周期表正式确定!

除了规范元素族名之外,科学家还花了很多努力来填补元素周期表上空缺的元素位置。直到 2016 年,IUPAC 才正式命名了鉨 Nihonium(Nh)和鿫 Oganeson(Og)等 118 号元素。门捷列夫提出元素周期表近 150 年后,元素周期表至第七周期的空白才全部填满。至此,元素周期表算是正式完成了。

img

参考文献

  1. 井口洋夫,井口眞 「新元素と周期律」, 裳華房,2013.
  2. IYPT2019 の Web ページ https://www.iypt2019.org/5/4/19 閲覧.
  3. Chemistry LibreText, https://chem.libretexts.org/Under_Construction/Purgatory/Textmaps_and_Wikitexts/Introductory_Chemistry/CK-12_Chemistry_(Version_I)/Chapter_3%3A_The_Organization_of_the_Elements/3.1%3A_Mendeleev’s_Periodic_Table, 5/4/19 閲覧.
  4. Fernellus, W. C.; Powell, W.H. Chem. Educ.1982, 59, 504. DOI: 10.1021/ed059p504
  5. G. N. Quam, M. B. Types of Graphic Classifications of the element. https://www.meta-synthesis.com/webbook/35_pt/JCE_PTs_1934_medium.pdf
  6. 浜田 圭之助,化学教育,1983, 31,482, 1 20665/kagakukyouiku.31.6_482
  7. PAC1988, 60, 431-436. DOI: 1351/pac198860030431
  8. Poliakoff, M.; Markin, A. D. J.; Tang, S. L. Y.; Poliakoff, E. Nature Chemistry2019, 11, 391. DOI: 1038/s41557-019-0253-6
  9. meta-synthesis https://www.meta-synthesis.com/index.html, 5/5/19 閲覧.

The History of the Periodic Table

元素周期表的历史
Things are different from each other, and each can be reduced to very small parts of itself. – Ancient knowledge
万物各不相同,且每种事物都能分解为其自身的极小部分。—— 古老的认知

that was known early-on by people, of course, but Greek thinkers Anaxagoras, Leucippus, and then Democritus, about 400 BCE, used a word which would become our “element” for different substances, and “atom” for their smallest parts.
当然,早期人们就知晓这一点,但公元前 400 年左右,希腊思想家阿那克萨戈拉、留基伯以及德谟克利特,用一个词来指代不同物质的 “元素”,用 “原子” 来指代元素的最小组成部分。

These have survived, while ’elements’ of Earth, Water, Air, Fire, and Ether to explain ’world stuff’, Aristotle’s concepts, misled Europeans into alchemy in the Middle Ages, mainly trying to make gold from lesser matter.
亚里士多德提出的用 “土、水、气、火、以太” 这五种 “元素” 来解释 “世界物质” 的概念流传了下来,却在中世纪误导欧洲人投身炼金术,他们主要试图将劣质物质转化为黄金。

Aristotle was rejected by Descartes, emphasizing more orderly methods of investigating nature.
笛卡尔摒弃了亚里士多德的观点,强调用更有条理的方法研究自然。

Experimental research then led Boyle in the mid 1600s also to separate from Aristotle. He measured the weight gain of heated metals, as well as helping start the Royal Society to further accuracy of observation in science - although he practiced alchemy himself.
元素周期表的历史中,17 世纪中期,实验研究促使波义耳也与亚里士多德的观点分道扬镳。他测量了受热金属的重量增加情况,还助力成立了皇家学会,以提高科学观察的准确性 —— 尽管他自己也从事炼金术。

The affinity table - Diderot’s shown here - sparked the chemical revolution (1718-1869), which revived Leucippus’ atomic theory in transition from mystical alchemy to a period of a huge amount of theoretical chemistry and experimentation.
亲和力表 —— 此处展示的是狄德罗的亲和力表 —— 引发了化学革命(1718-1869 年),这场革命使留基伯的原子理论在从神秘的炼金术向大量理论化学和实验研究过渡的过程中得以复兴。

Lavoisier, who became known as the “Father of Modern Chemistry”, developed the first extensive element list, of 33, separating metals from non-metals, dividing the few elements known in the 1700’s into four classes, and discovering Oxygen and Hydrogen.
被称为 “现代化学之父” 的拉瓦锡编制了第一份详尽的元素清单,包含 33 种元素,他将金属与非金属区分开来,把 18 世纪已知的少量元素分为四类,还发现了氧和氢。

Attempts to organize elements were based on chemical and physical properties that could be observed in the 1800s. In the 1820’s Berzelius’ weight based table introduced letters to identify elements, rather than the symbols used earlier. Dobereiner found that some sets of three elements could be grouped - later called ’Triads’ in 1829.
19 世纪,人们尝试根据可观测到的化学和物理性质来组织元素。19 世纪 20 年代,贝采利乌斯编制了基于重量的元素表,引入字母来标识元素,而非此前使用的符号。1829 年,德贝赖纳发现一些元素可以三个一组进行归类 —— 后来被称为 “三素组”。

“The chemical elements are composed of… indivisible particles of matter, called atoms… atoms of the same element are identical in all respects, particularly weight.” – Dalton
“化学元素由…… 不可分割的物质粒子组成,这些粒子被称为原子…… 同种元素的原子在各方面都相同,尤其是重量。”—— 道尔顿

Then Dalton, using Democritus’ ’atomos’ and developing an improved method of determining their weights created the first chart by weight. He also determined the differences between elements alone and compounds - a distinction further detailed by Avogadro 20 years later: that volumes of gas at the same pressure and temperature have equal numbers of molecules or atoms.
之后,道尔顿借鉴德谟克利特的 “原子” 概念,改进了测定原子重量的方法,编制出第一份按重量排序的元素表。他还明确了元素本身与化合物之间的区别 ——20 年后,阿伏伽德罗进一步详细阐述了这一区别:在相同压强和温度下,相同体积的气体含有相同数量的分子或原子。

Cannizaro, applying Avogadro’s law years later, produced more accurate atomic weights for the elements known in the 1860s, and announced them at the first major science convention, the Karlsruhe Congress.
多年后,康尼查罗运用阿伏伽德罗定律,为 19 世纪 60 年代已知的元素测定出了更精确的原子量,并在首届大型科学会议 —— 卡尔斯鲁厄会议上公布了这些数据。

Likely basing element sequencing by these weights, de Chancourtois, a geologist, created a fully-functioning periodic system on a cylinder, which he called the vis Tellurique, the first to portray the periodicity of properties that defines the modern table. Organizing the elements in three dimensions was a natural solution for him, as his work included correcting the relationships between world globes, maps, and sub-surfaces. It allowed him to convey elements’ common properties vertically while maintaining them all in unbroken order of increasing weight of their atoms - a decade prior to 地质学家尚古尔多阿可能基于这些原子量来确定元素的排列顺序,他在一个圆柱体上创建了一个功能完备的周期体系,称之为 “地球螺旋”,这是首个描绘出定义现代周期表的性质周期性的模型。由于他的工作包括校正地球仪、地图和地下表面之间的关系,所以对他而言,创建三维的元素排列方式是一种很自然的解决办法。这种方式能够在垂直方向上体现元素的共同性质,同时使所有元素按照原子量递增的顺序不间断排列 —— 这比门捷列夫的平面周期表早了十年,而门捷列夫通常被认为是元素周期表的发明者。

The first true periodic table was 3D.
首个真正的周期表是三维的。

De Chancourtois’ vis Tellurique paper, describing his 3D periodic table, was published by the French Academy of Sciences in 1862, but without the visual he had submitted, was poorly understood, and was little noticed for 11 years, but was re–introduced after Mendeleev’s periodic table attracted attention among chemists.
1862 年,法国科学院发表了尚古尔多阿描述其三维周期表的 “地球螺旋” 论文,但由于没有附上他提交的图表,这篇论文难以被理解,在 11 年内几乎无人问津。不过,在门捷列夫的周期表引起化学家们的关注后,这篇论文才被重新提及。

Then elements were arranged by Newlands and given a number sequence in order of their atomic weights, beginning with Hydrogen. This showed “The eighth element, starting from a given one, is a kind of repetition of the first”, which Newlands called the Law of Octaves. While correct, his connecting it to music led to ridicule and dismissal of the idea by scientists.
之后,纽兰兹对元素进行排列,并按照原子量顺序给它们编上了序号,从氢开始。这体现出 “从某一给定元素开始,第八个元素在某种程度上是第一个元素的重复”,纽兰兹将其称为 “八音律”。尽管这一观点是正确的,但他将其与音乐联系起来,招致了科学家们的嘲笑和对这一想法的否定。

In 1869, Meyer compiled a Periodic Table of 56 elements based on the periodicity of properties such as molar volume. Both Meyer and Mendeleev constructed periodic tables independently that are credited as being the basis of the modern table. Meyer was more impressed by the periodicity of physical properties, while Mendeleev was more interested in the chemical properties.
1869 年,迈耶基于摩尔体积等性质的周期性,编制了包含 56 种元素的周期表。迈耶和门捷列夫各自独立构建的周期表都被认为是现代周期表的基础。迈耶更关注物理性质的周期性,而门捷列夫则对化学性质更感兴趣。

Mendeleev also published his periodic table & Law in 1869, but he also forecast the properties of missing elements, and chemists began to appreciate it when, soon after, the discovery of elements predicted by gaps in his table took place. Mendeleev is almost universally thought of as the sole originator of the periodic table.
1869 年,门捷列夫也发表了他的周期表和周期律,但他还预测了缺失元素的性质。不久之后,他的周期表中留出的空位所预测的元素被发现,化学家们开始认可他的成果。几乎所有人都认为门捷列夫是周期表唯一的创始人。

“…if all the elements be arranged in order of their atomic weights a periodic repetition of properties is obtained.” – the Periodic Law, as stated by Mendeleev
“…… 如果将所有元素按照原子量排序,其性质会呈现出周期性的重复。”—— 门捷列夫所阐述的周期律

The periodic table appears to have been independently formulated by at least six people within one decade: de Chancourtois, Newlands, Meyer, and Mendeleev, as well as Hinrichs, and Odling.
在十年内,至少有六人独立提出了周期表的构想:尚古尔多阿、纽兰兹、迈耶、门捷列夫,还有欣里希斯和奥德林。

In 1894 Ramsay isolated argon, and in the next year discovered helium. He went on to discover neon, krypton and xenon, and added a group to the periodic table to be called the Noble Gases - elements least likely to combine with others.
元素周期表的历史中,1894 年,拉姆齐分离出氩,次年又发现了氦。他随后继续发现了氖、氪和氙,并在周期表中新增了一族,称为稀有气体 —— 这些元素最不容易与其他元素结合。

Later, the table was scientifically reordered by Mosely according to atomic numbers (nuclear charge, using X-Ray) rather than by weight, thereby modifying the Periodic Law.
元素周期表的历史中,后来,莫塞莱根据原子序数(利用 X 射线测定的核电荷数)而非原子量对周期表进行了科学的重新排序,从而修正了周期律。

The refreshed Periodic Law revealed important analogies among the 94 naturally occurring elements, and stimulated renewed interest in Inorganic Chemistry in the nineteenth century which has carried into the present with the creation of artificially produced, short lived elements of `atom smashers’ and supercolliders of high energy physics.
更新后的周期律揭示了 94 种天然存在元素之间的重要相似性,并在 19 世纪激发了人们对无机化学新的兴趣,这种兴趣一直延续到现在 —— 高能物理学领域的 “原子粉碎机” 和超级对撞机人工制造出了寿命短暂的元素。

Into the 1930s the heaviest elements were being put up in the body of the periodic table, and Seaborg “plucked those out” while working with Fermi in Chicago, naming them the Actinide series while making many new ones, which later permitted proper placement of subsequently ‘created’ elements - the Transactinides, changing the periodic table yet again. These elements were placed separate from the main body of the table.
20 世纪 30 年代,最重的元素被放入周期表的主体部分,而西博格在芝加哥与费米合作时,将这些元素 “提取出来”,将它们命名为锕系元素,同时还制造了许多新元素。这后来使得随后 “创造” 出的元素 —— 超锕系元素能够被正确放置,再次改变了周期表。这些元素被放在周期表主体之外。

Several scientists - and me, a science exhibit designer - have revived the de Chancourtois 3D periodic table concept for a new 20th Century paradigm.
一些科学家 —— 还有我,一位科学展品设计师 —— 为了适应 20 世纪的新范式,复兴了尚古尔多阿的三维周期表概念。

Some have started with a ribbon of elements in atomic number sequence and wrapped it in a spiral to vertically align elements with similar properties, which establishes the ‘periodic’ nature of the table. Others may have merely wrapped the plane of the flat table – after ramping the element rows – escalator–like – in the p–block – and let both the d- and f- element blocks loop, retaining the unbroken atomic number sequence above.
有些人从按原子序数排列的元素条带入手,将其缠绕成螺旋状,使具有相似性质的元素在垂直方向上对齐,从而确立了周期表的 “周期性” 本质。另一些人可能只是将平面周期表的平面部分 —— 在 p 区像自动扶梯一样倾斜元素行之后 —— 进行缠绕,并让 d 区和 f 区元素块都成环,同时保持上方原子序数的连续顺序。

Some may have been seeking to resolve technical questions, and others, like Courtines, Gamov and Alexander, aiming for a better educational tool.
元素周期表的历史中,有些人可能一直在寻求解决技术问题,而另一些人,如库尔蒂内斯、伽莫夫和亚历山大,则旨在打造一种更好的教育工具。

When Seaborg was shown the 1965 Alexander Arrangement in 1997, he said that it was ’correct’, and later told a photographer that it was his ’favorite’ periodic table.
1997 年,当西博格看到 1965 年的亚历山大元素排列法时,他说这种排列是 “正确的”,后来还告诉一位摄影师,这是他 “最喜欢的” 周期表。

The periodic table has been improved continuously over the last century and a half, built on the shoulders of many creative scientists.
在过去的一个半世纪里,周期表不断得到完善,它站在众多富有创造力的科学家的肩膀上发展而来。

The newer versions improve the educational possibilities, easing both use & amplifying of the immense predictive and correlative power of the periodic chart in teaching, learning, and working in chemistry.
更新后的版本提升了教育价值,既便于使用,又增强了周期表在化学教学、学习和工作中巨大的预测和关联能力。


The History of the Periodic Table

元素周期表的历史

Updated: March 2023

The invention of the periodic table in a nutshell:

元素周期表的发明简史

In 1869 Dmitri Mendeleev created the first variation of the periodic table as we know it today. He was the first person to arrange the elements by increasing atomic mass and leave spaces open for the elements that had not yet been discovered.
1869 年,德米特里・门捷列夫(Dmitri Mendeleev)创造了我们如今所熟知的元素周期表的首个版本。他是首位按原子质量递增顺序排列元素,并为尚未发现的元素留出空位的人。

Why the history of the Periodic Table matters:

元素周期表的历史为何重要:

The history of the periodic table is a fascinating story, and a perfect example of how “good things take time”. By reflecting on the development process of arguably the most important table known to man, we can learn a lot about what to do (and what not to do) if mankind wanted to invent similar wonderful things in the future.
元素周期表的历史是一个引人入胜的故事,也是 “好事多磨” 的绝佳例证。通过回顾这张可以说是人类已知最重要的表格的发展过程,我们能学到很多东西 —— 如果人类未来想发明类似的伟大事物,应该做什么,不应该做什么。

It might just be impossible to list every single contribution that was made towards the development of the periodic table, but in this article, we highlight the most important and interesting turn of events in the advent of the periodic table.
或许我们无法一一列举所有为元素周期表发展做出的贡献,但在本文中,我们将重点介绍元素周期表出现过程中最重要且最有趣的事件转折点。

Who created the Periodic Table of Elements first?

谁首先创造了元素周期表?

In the 16th and 17th centuries scientists were fascinated with the properties of different materials. As more elements were slowly being discovered, scientists began to move away from the ancient Greek idea of an element as an abstract substance with properties, to a more modern idea of the elements as the smallest building blocks of the universe. This left open a few important questions that would keep scientists around the world busy for centuries to come. How many elements are there? Is there a natural law by which the elements can be arranged?
在 16 和 17 世纪,科学家们痴迷于不同物质的性质。随着越来越多的元素被慢慢发现,科学家们开始摒弃古希腊人将元素视为具有特定性质的抽象物质这一观点,转而接受一种更现代的看法 —— 元素是宇宙的最小构成单元。这就留下了几个重要的问题,让全世界的科学家们在接下来的几个世纪里都为之忙碌。元素有多少种?是否存在一种自然规律可以用来排列这些元素?

Scientists of the 16th and 17th century were prepared to do anything to determine the answers to these vital questions.
16 和 17 世纪的科学家们为了找到这些关键问题的答案,不惜一切代价。

A Brief History of the Periodic Table of Elements: Infographic
元素周期表简史:信息图

在这里插入图片描述

The beginning of the Periodic Table battle

元素周期表之争的开端

1669

The German merchant and amateur alchemist, Hennig Brand, attempted to create a Philosopher’s stone. Like many others who failed, so did Brand, but little did he know that his actions would earn him a spot in the history books of science. He boiled a pot of urine for days, until the process produced a mysterious glowing substance which was extremely flammable. He was one of the first people to discover phosphorus.
德国商人兼业余炼金术士亨尼希・布兰德(Hennig Brand)试图制造一块哲人石。和许多失败的人一样,布兰德也失败了,但他不知道的是,他的行为将为他在科学史书中赢得一席之地。他将一壶尿液煮沸了好几天,最终得到了一种神秘的发光物质,这种物质极易燃烧。他是最早发现磷的人之一。

1789

Antoine Lavoisier, a French nobleman and chemist, compiled a list of thirty-three elements. Arguably the first element table to be created. Many of the elements on his list are no longer regarded as elements.
法国贵族兼化学家安托万・拉瓦锡(Antoine Lavoisier)编制了一份包含 33 种元素的清单。可以说这是最早创建的元素表之一。他清单上的许多元素如今已不再被视为元素。

1801

John Dalton began to build on the work of Lavoisier and a German chemist, Jeremias Benjamin Richter. He published his work, which become the beginning of the modern atomic theory, where he estimated the relative weights of elements.
约翰・道尔顿(John Dalton)开始在拉瓦锡和德国化学家耶利米斯・本杰明・里希特(Jeremias Benjamin Richter)的研究基础上进行拓展。他发表了自己的研究成果,这成为了现代原子理论的开端,在其中他估算了元素的相对重量。

1809

Alexander von Humboldt and Joseph Louis Gay-Lussac discovered diatomic molecules, which challenged parts of Dalton’s theories.
亚历山大・冯・洪堡(Alexander von Humboldt)和约瑟夫・路易・盖 - 吕萨克(Joseph Louis Gay-Lussac)发现了双原子分子,这对道尔顿理论的部分内容提出了挑战。

1813

Swedish chemist, Jöns Jacob Berzelius, first introduced the use of letter symbols to represent chemical elements. This approach seems only logical now, but at the time was a wonderful innovation.
瑞典化学家永斯・雅各布・贝采利乌斯(Jöns Jacob Berzelius)首次引入字母符号来表示化学元素。这种方法现在看来合情合理,但在当时却是一项了不起的创新。

1817

The German chemist, Johann Wolfgang Döbereiner, discovered the existence of groups of elements with similar chemical properties. He called these groups “triads”.
德国化学家约翰・沃尔夫冈・德贝赖纳(Johann Wolfgang Döbereiner)发现存在具有相似化学性质的元素组。他将这些组称为 “三素组”。

1862

Alexandre-Émile Béguyer de Chancourtois, a French geologist, was the first person to discover that similar elements appear periodically. He created a three-dimensional spiral, by engraving the elements around a metal cylinder. The telluric screw plotted the elements by increasing atomic weight, so that one complete turn corresponded to an atomic weight increase of 16. With his arrangement, elements with similar chemical properties appeared in a vertical line.
法国地质学家亚历山大 - 埃米尔・贝古耶・德・尚古尔多阿(Alexandre-Émile Béguyer de Chancourtois)是第一个发现相似元素周期性出现的人。他通过在金属圆柱体周围雕刻元素,创造出了一个三维螺旋结构。这个地球螺旋按照原子量递增的顺序排列元素,每完整旋转一圈,原子量就增加 16。在他的排列方式中,具有相似化学性质的元素出现在同一条垂直线上。
In the same year Lothar Meyer created two element tables, of which one consisted of twenty-eight elements arranged in order of increasing atomic weight.
同年, Lothar Meyer 制作了两个元素表,其中一个包含 28 种元素,并按原子量递增的顺序排列。

1863

An English chemist, John Newlands, divides the then known 56 elements into 11 groups based on chemical properties. Newlands noticed that there were similarities between elements with atomic weights that differed by eight or some multiple of eight. He called this system The Law of Octaves, drawing a comparison with the octaves of music. Newlands did not leave any gaps for undiscovered elements in his table, and sometimes had to cram two elements into one box to keep the pattern. The Royal Society of Chemistry refused to publish his papers, due to the unorganized nature of his table, with one Professor saying he might have equally listed the elements alphabetically.
英国化学家约翰・纽兰兹(John Newlands)根据化学性质,将当时已知的 56 种元素分为 11 组。纽兰兹注意到,原子量相差 8 或 8 的倍数的元素之间存在相似性。他将这种规律称为 “八音律”,并与音乐中的八度音阶进行类比。纽兰兹在他的表中没有为未发现的元素留出空位,有时为了保持这种规律,不得不将两种元素塞进一个格子里。由于他的表格缺乏条理性,英国皇家化学会拒绝发表他的论文,有一位教授甚至说,他还不如按字母顺序排列元素呢。

1868

In an update to his textbook, Lothar Meyer created a table that listed the elements in order of atomic weight, where elements with the same valency were arranged in vertical lines. He even left gaps for the elements that had not yet been discovered at the time, which is strikingly like the model built by Mendeleev only one year later. Unfortunately for Meyer, the table was not included in the latest publication of his book and was only published several years later, after his death in 1895.
在其教科书的修订版中, Lothar Meyer 制作了一个表格,按原子量顺序列出元素,其中具有相同化合价的元素排列在垂直线上。他甚至为当时尚未发现的元素留出了空位,这与仅一年后门捷列夫构建的模型惊人地相似。不幸的是,这个表格没有被收录在他那本书的最新版本中,直到 1895 年他去世几年后才得以发表。

The Periodic Table as we know it today

我们如今所熟知的元素周期表

1869

The Russian chemist, Dmitri Ivanovich Mendeleev, created the first variation of the periodic table as we know it today. On the 17th of February 1869, Mendeleev decided to cancel a trip to a cheese factory, to work on his periodic table. That night he listed the symbols of the elements on the back of his invitation to the cheese factory, until he had sketched out an entire periodic table of elements. The real genius of Mendeleev’s creation was the way he left gaps for undiscovered elements and extremely accurately predicted their existence and properties. At the time there were only sixty-three known elements and Mendeleev correctly predicted the discovery of several more. His table even corrected the atomic weights of existing elements and relocated others to their correct positions on the periodic table. His periodic table was announced on the 6th of March 1869 at a meeting of the Russian Chemical Society.
俄罗斯化学家德米特里・伊万诺维奇・门捷列夫(Dmitri Ivanovich Mendeleev)创造了我们如今所熟知的元素周期表的首个版本。1869 年 2 月 17 日,门捷列夫决定取消去一家奶酪厂的行程,转而研究他的元素周期表。那天晚上,他在去奶酪厂的邀请函背面列出了元素符号,直到勾勒出整个元素周期表。门捷列夫的创造真正的天才之处在于,他为未发现的元素留出了空位,并极其准确地预测了它们的存在和性质。当时已知的元素只有 63 种,而门捷列夫正确预测了更多元素的发现。他的周期表甚至修正了现有元素的原子量,并将其他元素重新放置到周期表上的正确位置。1869 年 3 月 6 日,他的元素周期表在俄罗斯化学会的一次会议上公布。

1894

Sir William Ramsay and Lord Rayleigh discovered the first noble gas, Argon. The gas did not seem to fit into Mendeleev’s table and troubled scientists for six years, until it was finally realised to be further proof of the existing periodic table system, fitting in as the final group on the periodic table.
威廉・拉姆齐爵士(Sir William Ramsay)和瑞利勋爵(Lord Rayleigh)发现了第一种稀有气体 —— 氩。这种气体似乎与门捷列夫的周期表不符,这一问题困扰了科学家们六年之久,直到人们最终意识到,它进一步证明了现有周期表体系的正确性,氩元素恰好可以归入周期表的最后一族。

1913

Six years after Mendeleev’s death, the final piece of the puzzle fell into place. The English physicist, Henry Moseley, finally determined why some of the elements on Mendeleev’s table did not fit into its predicted groups. When Moseley started arranging the elements by atomic number rather than atomic weight the framework of the modern periodic table was in place.
门捷列夫去世六年后,这一谜题的最后一块拼图终于归位。英国物理学家亨利・莫塞莱(Henry Moseley)最终弄清楚了为什么门捷列夫周期表中的一些元素与预测的族不匹配。当莫塞莱开始按原子序数而非原子量排列元素时,现代周期表的框架就确立了。

1932

James Chadwick discovered the neutron. The discovery of the neutron quickly changed scientists’ view of the atom, and Chadwick was awarded the Nobel Prize in 1935 for the discovery.
詹姆斯・查德威克(James Chadwick)发现了中子。中子的发现迅速改变了科学家们对原子的认识,查德威克也因此在 1935 年获得了诺贝尔奖。

1945

The American chemist, Glenn T. Seaborg, suggested the classification of Lanthanides and Actinides (atomic numbers > 92), which are usually placed below the periodic table.
美国化学家格伦・T・西博格(Glenn T. Seaborg)提出了镧系元素和锕系元素(原子序数 > 92)的分类方法,这些元素通常被放在周期表的下方。

2016

Four new elements were added to the periodic table, element 113 to 118.
四种新元素被加入周期表,分别是 113 号至 118 号元素。

What is the future of the Periodic Table?

元素周期表的未来会怎样?

Scientists believe that it would be possible to create element 119 and 120 and see no reason why we wouldn’t be able to go beyond that. Who knows, maybe element 119 will be named after you.
科学家们认为,创造出 119 号和 120 号元素是有可能的,而且也没有理由认为我们无法创造出更高序号的元素。谁知道呢,也许 119 号元素会以你的名字命名呢。

What we learnt from the History of the Periodic Table of Elements:

从元素周期表的历史中我们学到的:

Humans have an extraordinary capability of discovering and inventing, but we could be so much more efficient if we worked together. In the 1860’s at least 5 chemists were working on the same problem of creating a periodic table of elements. If only two of these brilliant minds came together and shared their knowledge, we might have made this world changing scientific invention years before Mendeleev stumbled unto it in 1869.
人类拥有非凡的发现和发明能力,但如果我们携手合作,效率会高得多。在 19 世纪 60 年代,至少有 5 位化学家都在研究创建元素周期表这一相同的问题。要是这些杰出的头脑中能有两位走到一起,分享他们的知识,我们或许能比门捷列夫在 1869 年偶然发现元素周期表早好几年,就做出这项改变世界的科学发明。


NIST PERIODIC TABLE

在这里插入图片描述

NI STory of the Periodic Table

在这里插入图片描述

Deuterium(氘)

This rare heavy isotope of hydrogen was concentrated at NIST and then identified by Columbia University’s Harold Urey (Nobel Prize 1934). On the left is a deuterium lamp; the light on the right comes from the NIST SURF III Synchrotron Ultraviolet Radiation Facility.
这种稀有的氢的重同位素在 NIST 被富集,随后由哥伦比亚大学的哈罗德・尤里(1934 年诺贝尔奖得主)识别出来。左侧是一盏氘灯;右侧的光来自 NIST 的 SURF III 同步辐射紫外光源设施 。

Krypton(氪)

Wavelengths of light from this atom, measured by NIST researchers, defined the official meter until 1983.
由 NIST 研究人员测量的、来自该原子的光的波长,在 1983 年之前一直是 “米” 的官方定义 。

Cesium(铯)

The frequency of microwave radiation from this atom in atomic clocks such as the NIST-F2 (2014) is used to define the second.
在诸如 NIST - F2(2014 年)这样的原子钟中,该原子发出的微波辐射频率被用于定义 “秒” 。

Sodium(钠)

NIST scientists used lasers to cool a gas of these atoms to more than theoretically expected to temperatures even closer to absolute zero (Nobel Prize 1997).
NIST 的科学家们用激光冷却这种原子的气体,使其温度比理论预期更接近绝对零度(1997 年诺贝尔奖相关成果) 。

Rubidium(铷)

These atoms were used by researchers at JILA (NIST - CU Boulder) to create the first Bose - Einstein condensate (Nobel Prize 2001).
JILA(NIST 与科罗拉多大学博尔德分校合作机构)的研究人员用这些原子创造出了首个玻色 - 爱因斯坦凝聚态(2001 年诺贝尔奖相关成果) 。

Potassium and Rubidium(钾和铷)

JILA researchers married these elements into an ultracold gas of molecules and demonstrated striking predictions of quantum physics by hitting the atoms with “rulers of light” known as frequency combs (Nobel Prize 2005) and trapping them in webs of light known as optical lattices.
JILA 的研究人员将这些元素结合成超冷分子气体,通过用被称为 “频率梳”(2005 年诺贝尔奖相关成果)的 “光尺” 照射原子,并将原子困在被称为 “光晶格” 的光网中,验证了量子物理中引人注目的预测 。

Beryllium and Aluminum(铍和铝)

Individual ions of these atoms were probed in a NIST trap to create measured “quantum logic” clocks that measured the second more precisely than before and tested Einstein’s general theory of relativity. Such quantum manipulations were recognized in the 2012 Nobel Prize.
在 NIST 的离子阱中对这些原子的单个离子进行探测,制造出了 “量子逻辑” 钟,其测量 “秒” 的精度比以往更高,还用于测试爱因斯坦的广义相对论。这类量子操控成果在 2012 年诺贝尔奖中得到认可 。

中国化学会(CCS)元素周期表

在这里插入图片描述

2019 年现在使用的长周期型元素周期表

在这里插入图片描述


via:

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值