随机变量的线性最小均方估计(LMMSE)——单个观测变量

假设有一个随机变量 X X X和一个观测变量 Y Y Y,线性最小均方估计(LMMSE)的目标是基于观测 Y Y Y X X X进行估计,即寻找一个线性估计 X ^ = a Y + b \hat{X} = aY + b X^=aY+b,使得估计值 X ^ \hat{X} X^与真实值 X X X之间的均方误差最小。

目标函数

首先,定义均方误差(Mean Squared Error, MSE)为:
M S E = E [ ( X − X ^ ) 2 ] = E [ ( X − ( a Y + b ) ) 2 ] MSE = E[(X - \hat{X})^2] = E[(X - (aY + b))^2] MSE=E[(XX^)2]=E[(X(aY+b))2]

求解最优参数

为了最小化 M S E MSE MSE,我们需要对 a a a b b b求偏导数,并将这些偏导数设置为零。

a a a求偏导数

∂ M S E ∂ a = 2 E [ ( X − a Y − b ) ( − Y ) ] = − 2 E [ ( X − a Y − b ) Y ] \frac{\partial MSE}{\partial a} = 2E[(X - aY - b)(-Y)] = -2E[(X - aY - b)Y] aMSE=2E[(XaYb)(Y)]=2E[(XaYb)Y]

∂ M S E ∂ a = 0 \frac{\partial MSE}{\partial a} = 0 aMSE=0,则有:
E [ ( X − a Y − b ) Y ] = 0 E[(X - aY - b)Y] = 0 E[(XaYb)Y]=0

展开并整理得:
E [ X Y ] − a E [ Y 2 ] − b E [ Y ] = 0 E[XY] - aE[Y^2] - bE[Y] = 0 E[XY]aE[Y2]bE[Y]=0

b b b求偏导数

∂ M S E ∂ b = 2 E [ ( X − a Y − b ) ( − 1 ) ] = − 2 E [ X − a Y − b ] \frac{\partial MSE}{\partial b} = 2E[(X - aY - b)(-1)] = -2E[X - aY - b] bMSE=2E[(XaYb)(1)]=2E[XaYb]

∂ M S E ∂ b = 0 \frac{\partial MSE}{\partial b} = 0 bMSE=0,则有:
E [ X − a Y − b ] = 0 E[X - aY - b] = 0 E[XaYb]=0

展开并整理得:
E [ X ] − a E [ Y ] − b = 0 E[X] - aE[Y] - b = 0 E[X]aE[Y]b=0

解方程组

我们得到了两个方程:
1. E [ X Y ] − a E [ Y 2 ] − b E [ Y ] = 0 E[XY] - aE[Y^2] - bE[Y] = 0 E[XY]aE[Y2]bE[Y]=0
2. E [ X ] − a E [ Y ] − b = 0 E[X] - aE[Y] - b = 0 E[X]aE[Y]b=0

从第二个方程中解出 b b b
b = E [ X ] − a E [ Y ] b = E[X] - aE[Y] b=E[X]aE[Y]

b b b代入第一个方程:
E [ X Y ] − a E [ Y 2 ] − ( E [ X ] − a E [ Y ] ) E [ Y ] = 0 E[XY] - aE[Y^2] - (E[X] - aE[Y])E[Y] = 0 E[XY]aE[Y2](E[X]aE[Y])E[Y]=0

简化得:
E [ X Y ] − a E [ Y 2 ] − E [ X ] E [ Y ] + a ( E [ Y ] ) 2 = 0 E[XY] - aE[Y^2] - E[X]E[Y] + a(E[Y])^2 = 0 E[XY]aE[Y2]E[X]E[Y]+a(E[Y])2=0

进一步整理得:
E [ X Y ] − E [ X ] E [ Y ] = a ( E [ Y 2 ] − ( E [ Y ] ) 2 ) E[XY] - E[X]E[Y] = a(E[Y^2] - (E[Y])^2) E[XY]E[X]E[Y]=a(E[Y2](E[Y])2)

注意到:
Cov ( X , Y ) = E [ X Y ] − E [ X ] E [ Y ] \text{Cov}(X, Y) = E[XY] - E[X]E[Y] Cov(X,Y)=E[XY]E[X]E[Y]
Var ( Y ) = E [ Y 2 ] − ( E [ Y ] ) 2 \text{Var}(Y) = E[Y^2] - (E[Y])^2 Var(Y)=E[Y2](E[Y])2

因此,我们有:
Cov ( X , Y ) = a ⋅ Var ( Y ) \text{Cov}(X, Y) = a \cdot \text{Var}(Y) Cov(X,Y)=aVar(Y)

解得:
a = Cov ( X , Y ) Var ( Y ) a = \frac{\text{Cov}(X, Y)}{\text{Var}(Y)} a=Var(Y)Cov(X,Y)

再将 a a a代入 b b b的表达式:
b = E [ X ] − a E [ Y ] = E [ X ] − ( Cov ( X , Y ) Var ( Y ) ) E [ Y ] b = E[X] - aE[Y] = E[X] - \left(\frac{\text{Cov}(X, Y)}{\text{Var}(Y)}\right)E[Y] b=E[X]aE[Y]=E[X](Var(Y)Cov(X,Y))E[Y]

最终结果

综上所述,线性最小均方估计的最优参数为:
a = Cov ( X , Y ) Var ( Y ) a = \frac{\text{Cov}(X, Y)}{\text{Var}(Y)} a=Var(Y)Cov(X,Y)
b = E [ X ] − a E [ Y ] b = E[X] - aE[Y] b=E[X]aE[Y]

因此,LMMSE估计为:
X ^ = a Y + b = Cov ( X , Y ) Var ( Y ) Y + ( E [ X ] − Cov ( X , Y ) Var ( Y ) E [ Y ] ) \hat{X} = aY + b = \frac{\text{Cov}(X, Y)}{\text{Var}(Y)}Y + \left(E[X] - \frac{\text{Cov}(X, Y)}{\text{Var}(Y)}E[Y]\right) X^=aY+b=Var(Y)Cov(X,Y)Y+(E[X]Var(Y)Cov(X,Y)E[Y])

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值