PCL中点云BoundingBox包围盒绘制(基于PCA)

!!!实现环境:pcl1.8.0+vs2015+win10

大致过程:

1、利用PCA主元分析法获得点云的三个主方向,获取质心,计算协方差,获得协方差矩阵,求取协方差矩阵的特征值和特长向量,特征向量即为主方向。

 
  1. Eigen::Vector4f pcaCentroid;

  2. pcl::compute3DCentroid(*cloud, pcaCentroid);

  3. Eigen::Matrix3f covariance;

  4. pcl::computeCovarianceMatrixNormalized(*cloud, pcaCentroid, covariance);

  5. Eigen::SelfAdjointEigenSolver<Eigen::Matrix3f> eigen_solver(covariance, Eigen::ComputeEigenvectors);

  6. Eigen::Matrix3f eigenVectorsPCA = eigen_solver.eigenvectors();

  7. Eigen::Vector3f eigenValuesPCA = eigen_solver.eigenvalues();

  8. eigenVectorsPCA.col(2) = eigenVectorsPCA.col(0).cross(eigenVectorsPCA.col(1)); //校正主方向间垂直

  9. eigenVectorsPCA.col(0) = eigenVectorsPCA.col(1).cross(eigenVectorsPCA.col(2));

  10. eigenVectorsPCA.col(1) = eigenVectorsPCA.col(2).cross(eigenVectorsPCA.col(0));

2、利用1中获得的主方向和质心,将输入点云转换至原点,且主方向与坐标系方向重回,建立变换到原点的点云的包围盒。

3、给输入点云设置主方向和包围盒,通过输入点云到原点点云变换的逆变换实现。

4、完整代码:

 
  1. #include <vtkAutoInit.h>

  2. VTK_MODULE_INIT(vtkRenderingOpenGL);

  3. VTK_MODULE_INIT(vtkInteractionStyle);

  4. VTK_MODULE_INIT(vtkRenderingFreeType);

  5.  
  6. #include <iostream>

  7. #include <string>

  8. #include <pcl/io/pcd_io.h>

  9. #include <pcl/point_cloud.h>

  10. #include <pcl/point_types.h>

  11. #include <Eigen/Core>

  12. #include <pcl/common/transforms.h>

  13. #include <pcl/common/common.h>

  14. #include <pcl/visualization/pcl_visualizer.h>

  15.  
  16. using namespace std;

  17. typedef pcl::PointXYZ PointType;

  18.  
  19. int main(int argc, char **argv)

  20. {

  21. pcl::PointCloud<PointType>::Ptr cloud(new pcl::PointCloud<PointType>());

  22.  
  23. std::cout << "请输入需要显示的点云文件名:";

  24. std::string fileName("rabbit");

  25. getline(cin, fileName);

  26. fileName += ".pcd";

  27. //std::string fileName(argv[1]);

  28. pcl::io::loadPCDFile(fileName, *cloud);

  29.  
  30. Eigen::Vector4f pcaCentroid;

  31. pcl::compute3DCentroid(*cloud, pcaCentroid);

  32. Eigen::Matrix3f covariance;

  33. pcl::computeCovarianceMatrixNormalized(*cloud, pcaCentroid, covariance);

  34. Eigen::SelfAdjointEigenSolver<Eigen::Matrix3f> eigen_solver(covariance, Eigen::ComputeEigenvectors);

  35. Eigen::Matrix3f eigenVectorsPCA = eigen_solver.eigenvectors();

  36. Eigen::Vector3f eigenValuesPCA = eigen_solver.eigenvalues();

  37. eigenVectorsPCA.col(2) = eigenVectorsPCA.col(0).cross(eigenVectorsPCA.col(1)); //校正主方向间垂直

  38. eigenVectorsPCA.col(0) = eigenVectorsPCA.col(1).cross(eigenVectorsPCA.col(2));

  39. eigenVectorsPCA.col(1) = eigenVectorsPCA.col(2).cross(eigenVectorsPCA.col(0));

  40.  
  41. std::cout << "特征值va(3x1):\n" << eigenValuesPCA << std::endl;

  42. std::cout << "特征向量ve(3x3):\n" << eigenVectorsPCA << std::endl;

  43. std::cout << "质心点(4x1):\n" << pcaCentroid << std::endl;

  44. /*

  45. // 另一种计算点云协方差矩阵特征值和特征向量的方式:通过pcl中的pca接口,如下,这种情况得到的特征向量相似特征向量

  46. pcl::PointCloud<pcl::PointXYZ>::Ptr cloudPCAprojection (new pcl::PointCloud<pcl::PointXYZ>);

  47. pcl::PCA<pcl::PointXYZ> pca;

  48. pca.setInputCloud(cloudSegmented);

  49. pca.project(*cloudSegmented, *cloudPCAprojection);

  50. std::cerr << std::endl << "EigenVectors: " << pca.getEigenVectors() << std::endl;//计算特征向量

  51. std::cerr << std::endl << "EigenValues: " << pca.getEigenValues() << std::endl;//计算特征值

  52. */

  53. Eigen::Matrix4f tm = Eigen::Matrix4f::Identity();

  54. Eigen::Matrix4f tm_inv = Eigen::Matrix4f::Identity();

  55. tm.block<3, 3>(0, 0) = eigenVectorsPCA.transpose(); //R.

  56. tm.block<3, 1>(0, 3) = -1.0f * (eigenVectorsPCA.transpose()) *(pcaCentroid.head<3>());// -R*t

  57. tm_inv = tm.inverse();

  58.  
  59. std::cout << "变换矩阵tm(4x4):\n" << tm << std::endl;

  60. std::cout << "逆变矩阵tm'(4x4):\n" << tm_inv << std::endl;

  61.  
  62. pcl::PointCloud<PointType>::Ptr transformedCloud(new pcl::PointCloud<PointType>);

  63. pcl::transformPointCloud(*cloud, *transformedCloud, tm);

  64.  
  65. PointType min_p1, max_p1;

  66. Eigen::Vector3f c1, c;

  67. pcl::getMinMax3D(*transformedCloud, min_p1, max_p1);

  68. c1 = 0.5f*(min_p1.getVector3fMap() + max_p1.getVector3fMap());

  69.  
  70. std::cout << "型心c1(3x1):\n" << c1 << std::endl;

  71.  
  72. Eigen::Affine3f tm_inv_aff(tm_inv);

  73. pcl::transformPoint(c1, c, tm_inv_aff);

  74.  
  75. Eigen::Vector3f whd, whd1;

  76. whd1 = max_p1.getVector3fMap() - min_p1.getVector3fMap();

  77. whd = whd1;

  78. float sc1 = (whd1(0) + whd1(1) + whd1(2)) / 3; //点云平均尺度,用于设置主方向箭头大小

  79.  
  80. std::cout << "width1=" << whd1(0) << endl;

  81. std::cout << "heght1=" << whd1(1) << endl;

  82. std::cout << "depth1=" << whd1(2) << endl;

  83. std::cout << "scale1=" << sc1 << endl;

  84.  
  85. const Eigen::Quaternionf bboxQ1(Eigen::Quaternionf::Identity());

  86. const Eigen::Vector3f bboxT1(c1);

  87.  
  88. const Eigen::Quaternionf bboxQ(tm_inv.block<3, 3>(0, 0));

  89. const Eigen::Vector3f bboxT(c);

  90.  
  91.  
  92. //变换到原点的点云主方向

  93. PointType op;

  94. op.x = 0.0;

  95. op.y = 0.0;

  96. op.z = 0.0;

  97. Eigen::Vector3f px, py, pz;

  98. Eigen::Affine3f tm_aff(tm);

  99. pcl::transformVector(eigenVectorsPCA.col(0), px, tm_aff);

  100. pcl::transformVector(eigenVectorsPCA.col(1), py, tm_aff);

  101. pcl::transformVector(eigenVectorsPCA.col(2), pz, tm_aff);

  102. PointType pcaX;

  103. pcaX.x = sc1 * px(0);

  104. pcaX.y = sc1 * px(1);

  105. pcaX.z = sc1 * px(2);

  106. PointType pcaY;

  107. pcaY.x = sc1 * py(0);

  108. pcaY.y = sc1 * py(1);

  109. pcaY.z = sc1 * py(2);

  110. PointType pcaZ;

  111. pcaZ.x = sc1 * pz(0);

  112. pcaZ.y = sc1 * pz(1);

  113. pcaZ.z = sc1 * pz(2);

  114.  
  115.  
  116. //初始点云的主方向

  117. PointType cp;

  118. cp.x = pcaCentroid(0);

  119. cp.y = pcaCentroid(1);

  120. cp.z = pcaCentroid(2);

  121. PointType pcX;

  122. pcX.x = sc1 * eigenVectorsPCA(0, 0) + cp.x;

  123. pcX.y = sc1 * eigenVectorsPCA(1, 0) + cp.y;

  124. pcX.z = sc1 * eigenVectorsPCA(2, 0) + cp.z;

  125. PointType pcY;

  126. pcY.x = sc1 * eigenVectorsPCA(0, 1) + cp.x;

  127. pcY.y = sc1 * eigenVectorsPCA(1, 1) + cp.y;

  128. pcY.z = sc1 * eigenVectorsPCA(2, 1) + cp.z;

  129. PointType pcZ;

  130. pcZ.x = sc1 * eigenVectorsPCA(0, 2) + cp.x;

  131. pcZ.y = sc1 * eigenVectorsPCA(1, 2) + cp.y;

  132. pcZ.z = sc1 * eigenVectorsPCA(2, 2) + cp.z;

  133.  
  134.  
  135. //visualization

  136. pcl::visualization::PCLVisualizer viewer;

  137.  
  138. pcl::visualization::PointCloudColorHandlerCustom<PointType> tc_handler(transformedCloud, 0, 255, 0); //转换到原点的点云相关

  139. viewer.addPointCloud(transformedCloud, tc_handler, "transformCloud");

  140. viewer.addCube(bboxT1, bboxQ1, whd1(0), whd1(1), whd1(2), "bbox1");

  141. viewer.setShapeRenderingProperties(pcl::visualization::PCL_VISUALIZER_REPRESENTATION, pcl::visualization::PCL_VISUALIZER_REPRESENTATION_WIREFRAME, "bbox1");

  142. viewer.setShapeRenderingProperties(pcl::visualization::PCL_VISUALIZER_COLOR, 0.0, 1.0, 0.0, "bbox1");

  143.  
  144. viewer.addArrow(pcaX, op, 1.0, 0.0, 0.0, false, "arrow_X");

  145. viewer.addArrow(pcaY, op, 0.0, 1.0, 0.0, false, "arrow_Y");

  146. viewer.addArrow(pcaZ, op, 0.0, 0.0, 1.0, false, "arrow_Z");

  147.  
  148. pcl::visualization::PointCloudColorHandlerCustom<PointType> color_handler(cloud, 255, 0, 0); //输入的初始点云相关

  149. viewer.addPointCloud(cloud, color_handler, "cloud");

  150. viewer.addCube(bboxT, bboxQ, whd(0), whd(1), whd(2), "bbox");

  151. viewer.setShapeRenderingProperties(pcl::visualization::PCL_VISUALIZER_REPRESENTATION, pcl::visualization::PCL_VISUALIZER_REPRESENTATION_WIREFRAME, "bbox");

  152. viewer.setShapeRenderingProperties(pcl::visualization::PCL_VISUALIZER_COLOR, 1.0, 0.0, 0.0, "bbox");

  153.  
  154. viewer.addArrow(pcX, cp, 1.0, 0.0, 0.0, false, "arrow_x");

  155. viewer.addArrow(pcY, cp, 0.0, 1.0, 0.0, false, "arrow_y");

  156. viewer.addArrow(pcZ, cp, 0.0, 0.0, 1.0, false, "arrow_z");

  157.  
  158. viewer.addCoordinateSystem(0.5f*sc1);

  159. viewer.setBackgroundColor(1.0, 1.0, 1.0);

  160. while (!viewer.wasStopped())

  161. {

  162. viewer.spinOnce(100);

  163. }

  164.  
  165. return 0;

  166. }

注:如有问题请批评指正。

参考资料:

[1] Finding oriented bounding box of a cloud

[2] 计算点云的最小BBOX

 

全文地址请点击:https://blog.youkuaiyun.com/WillWinston/article/details/80196895?utm_source=copy

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值