!!!实现环境:pcl1.8.0+vs2015+win10
大致过程:
1、利用PCA主元分析法获得点云的三个主方向,获取质心,计算协方差,获得协方差矩阵,求取协方差矩阵的特征值和特长向量,特征向量即为主方向。
-
Eigen::Vector4f pcaCentroid;
-
pcl::compute3DCentroid(*cloud, pcaCentroid);
-
Eigen::Matrix3f covariance;
-
pcl::computeCovarianceMatrixNormalized(*cloud, pcaCentroid, covariance);
-
Eigen::SelfAdjointEigenSolver<Eigen::Matrix3f> eigen_solver(covariance, Eigen::ComputeEigenvectors);
-
Eigen::Matrix3f eigenVectorsPCA = eigen_solver.eigenvectors();
-
Eigen::Vector3f eigenValuesPCA = eigen_solver.eigenvalues();
-
eigenVectorsPCA.col(2) = eigenVectorsPCA.col(0).cross(eigenVectorsPCA.col(1)); //校正主方向间垂直
-
eigenVectorsPCA.col(0) = eigenVectorsPCA.col(1).cross(eigenVectorsPCA.col(2));
-
eigenVectorsPCA.col(1) = eigenVectorsPCA.col(2).cross(eigenVectorsPCA.col(0));
2、利用1中获得的主方向和质心,将输入点云转换至原点,且主方向与坐标系方向重回,建立变换到原点的点云的包围盒。
3、给输入点云设置主方向和包围盒,通过输入点云到原点点云变换的逆变换实现。
4、完整代码:
-
#include <vtkAutoInit.h>
-
VTK_MODULE_INIT(vtkRenderingOpenGL);
-
VTK_MODULE_INIT(vtkInteractionStyle);
-
VTK_MODULE_INIT(vtkRenderingFreeType);
-
#include <iostream>
-
#include <string>
-
#include <pcl/io/pcd_io.h>
-
#include <pcl/point_cloud.h>
-
#include <pcl/point_types.h>
-
#include <Eigen/Core>
-
#include <pcl/common/transforms.h>
-
#include <pcl/common/common.h>
-
#include <pcl/visualization/pcl_visualizer.h>
-
using namespace std;
-
typedef pcl::PointXYZ PointType;
-
int main(int argc, char **argv)
-
{
-
pcl::PointCloud<PointType>::Ptr cloud(new pcl::PointCloud<PointType>());
-
std::cout << "请输入需要显示的点云文件名:";
-
std::string fileName("rabbit");
-
getline(cin, fileName);
-
fileName += ".pcd";
-
//std::string fileName(argv[1]);
-
pcl::io::loadPCDFile(fileName, *cloud);
-
Eigen::Vector4f pcaCentroid;
-
pcl::compute3DCentroid(*cloud, pcaCentroid);
-
Eigen::Matrix3f covariance;
-
pcl::computeCovarianceMatrixNormalized(*cloud, pcaCentroid, covariance);
-
Eigen::SelfAdjointEigenSolver<Eigen::Matrix3f> eigen_solver(covariance, Eigen::ComputeEigenvectors);
-
Eigen::Matrix3f eigenVectorsPCA = eigen_solver.eigenvectors();
-
Eigen::Vector3f eigenValuesPCA = eigen_solver.eigenvalues();
-
eigenVectorsPCA.col(2) = eigenVectorsPCA.col(0).cross(eigenVectorsPCA.col(1)); //校正主方向间垂直
-
eigenVectorsPCA.col(0) = eigenVectorsPCA.col(1).cross(eigenVectorsPCA.col(2));
-
eigenVectorsPCA.col(1) = eigenVectorsPCA.col(2).cross(eigenVectorsPCA.col(0));
-
std::cout << "特征值va(3x1):\n" << eigenValuesPCA << std::endl;
-
std::cout << "特征向量ve(3x3):\n" << eigenVectorsPCA << std::endl;
-
std::cout << "质心点(4x1):\n" << pcaCentroid << std::endl;
-
/*
-
// 另一种计算点云协方差矩阵特征值和特征向量的方式:通过pcl中的pca接口,如下,这种情况得到的特征向量相似特征向量
-
pcl::PointCloud<pcl::PointXYZ>::Ptr cloudPCAprojection (new pcl::PointCloud<pcl::PointXYZ>);
-
pcl::PCA<pcl::PointXYZ> pca;
-
pca.setInputCloud(cloudSegmented);
-
pca.project(*cloudSegmented, *cloudPCAprojection);
-
std::cerr << std::endl << "EigenVectors: " << pca.getEigenVectors() << std::endl;//计算特征向量
-
std::cerr << std::endl << "EigenValues: " << pca.getEigenValues() << std::endl;//计算特征值
-
*/
-
Eigen::Matrix4f tm = Eigen::Matrix4f::Identity();
-
Eigen::Matrix4f tm_inv = Eigen::Matrix4f::Identity();
-
tm.block<3, 3>(0, 0) = eigenVectorsPCA.transpose(); //R.
-
tm.block<3, 1>(0, 3) = -1.0f * (eigenVectorsPCA.transpose()) *(pcaCentroid.head<3>());// -R*t
-
tm_inv = tm.inverse();
-
std::cout << "变换矩阵tm(4x4):\n" << tm << std::endl;
-
std::cout << "逆变矩阵tm'(4x4):\n" << tm_inv << std::endl;
-
pcl::PointCloud<PointType>::Ptr transformedCloud(new pcl::PointCloud<PointType>);
-
pcl::transformPointCloud(*cloud, *transformedCloud, tm);
-
PointType min_p1, max_p1;
-
Eigen::Vector3f c1, c;
-
pcl::getMinMax3D(*transformedCloud, min_p1, max_p1);
-
c1 = 0.5f*(min_p1.getVector3fMap() + max_p1.getVector3fMap());
-
std::cout << "型心c1(3x1):\n" << c1 << std::endl;
-
Eigen::Affine3f tm_inv_aff(tm_inv);
-
pcl::transformPoint(c1, c, tm_inv_aff);
-
Eigen::Vector3f whd, whd1;
-
whd1 = max_p1.getVector3fMap() - min_p1.getVector3fMap();
-
whd = whd1;
-
float sc1 = (whd1(0) + whd1(1) + whd1(2)) / 3; //点云平均尺度,用于设置主方向箭头大小
-
std::cout << "width1=" << whd1(0) << endl;
-
std::cout << "heght1=" << whd1(1) << endl;
-
std::cout << "depth1=" << whd1(2) << endl;
-
std::cout << "scale1=" << sc1 << endl;
-
const Eigen::Quaternionf bboxQ1(Eigen::Quaternionf::Identity());
-
const Eigen::Vector3f bboxT1(c1);
-
const Eigen::Quaternionf bboxQ(tm_inv.block<3, 3>(0, 0));
-
const Eigen::Vector3f bboxT(c);
-
//变换到原点的点云主方向
-
PointType op;
-
op.x = 0.0;
-
op.y = 0.0;
-
op.z = 0.0;
-
Eigen::Vector3f px, py, pz;
-
Eigen::Affine3f tm_aff(tm);
-
pcl::transformVector(eigenVectorsPCA.col(0), px, tm_aff);
-
pcl::transformVector(eigenVectorsPCA.col(1), py, tm_aff);
-
pcl::transformVector(eigenVectorsPCA.col(2), pz, tm_aff);
-
PointType pcaX;
-
pcaX.x = sc1 * px(0);
-
pcaX.y = sc1 * px(1);
-
pcaX.z = sc1 * px(2);
-
PointType pcaY;
-
pcaY.x = sc1 * py(0);
-
pcaY.y = sc1 * py(1);
-
pcaY.z = sc1 * py(2);
-
PointType pcaZ;
-
pcaZ.x = sc1 * pz(0);
-
pcaZ.y = sc1 * pz(1);
-
pcaZ.z = sc1 * pz(2);
-
//初始点云的主方向
-
PointType cp;
-
cp.x = pcaCentroid(0);
-
cp.y = pcaCentroid(1);
-
cp.z = pcaCentroid(2);
-
PointType pcX;
-
pcX.x = sc1 * eigenVectorsPCA(0, 0) + cp.x;
-
pcX.y = sc1 * eigenVectorsPCA(1, 0) + cp.y;
-
pcX.z = sc1 * eigenVectorsPCA(2, 0) + cp.z;
-
PointType pcY;
-
pcY.x = sc1 * eigenVectorsPCA(0, 1) + cp.x;
-
pcY.y = sc1 * eigenVectorsPCA(1, 1) + cp.y;
-
pcY.z = sc1 * eigenVectorsPCA(2, 1) + cp.z;
-
PointType pcZ;
-
pcZ.x = sc1 * eigenVectorsPCA(0, 2) + cp.x;
-
pcZ.y = sc1 * eigenVectorsPCA(1, 2) + cp.y;
-
pcZ.z = sc1 * eigenVectorsPCA(2, 2) + cp.z;
-
//visualization
-
pcl::visualization::PCLVisualizer viewer;
-
pcl::visualization::PointCloudColorHandlerCustom<PointType> tc_handler(transformedCloud, 0, 255, 0); //转换到原点的点云相关
-
viewer.addPointCloud(transformedCloud, tc_handler, "transformCloud");
-
viewer.addCube(bboxT1, bboxQ1, whd1(0), whd1(1), whd1(2), "bbox1");
-
viewer.setShapeRenderingProperties(pcl::visualization::PCL_VISUALIZER_REPRESENTATION, pcl::visualization::PCL_VISUALIZER_REPRESENTATION_WIREFRAME, "bbox1");
-
viewer.setShapeRenderingProperties(pcl::visualization::PCL_VISUALIZER_COLOR, 0.0, 1.0, 0.0, "bbox1");
-
viewer.addArrow(pcaX, op, 1.0, 0.0, 0.0, false, "arrow_X");
-
viewer.addArrow(pcaY, op, 0.0, 1.0, 0.0, false, "arrow_Y");
-
viewer.addArrow(pcaZ, op, 0.0, 0.0, 1.0, false, "arrow_Z");
-
pcl::visualization::PointCloudColorHandlerCustom<PointType> color_handler(cloud, 255, 0, 0); //输入的初始点云相关
-
viewer.addPointCloud(cloud, color_handler, "cloud");
-
viewer.addCube(bboxT, bboxQ, whd(0), whd(1), whd(2), "bbox");
-
viewer.setShapeRenderingProperties(pcl::visualization::PCL_VISUALIZER_REPRESENTATION, pcl::visualization::PCL_VISUALIZER_REPRESENTATION_WIREFRAME, "bbox");
-
viewer.setShapeRenderingProperties(pcl::visualization::PCL_VISUALIZER_COLOR, 1.0, 0.0, 0.0, "bbox");
-
viewer.addArrow(pcX, cp, 1.0, 0.0, 0.0, false, "arrow_x");
-
viewer.addArrow(pcY, cp, 0.0, 1.0, 0.0, false, "arrow_y");
-
viewer.addArrow(pcZ, cp, 0.0, 0.0, 1.0, false, "arrow_z");
-
viewer.addCoordinateSystem(0.5f*sc1);
-
viewer.setBackgroundColor(1.0, 1.0, 1.0);
-
while (!viewer.wasStopped())
-
{
-
viewer.spinOnce(100);
-
}
-
return 0;
-
}
注:如有问题请批评指正。
参考资料:
[1] Finding oriented bounding box of a cloud
[2] 计算点云的最小BBOX
全文地址请点击:https://blog.youkuaiyun.com/WillWinston/article/details/80196895?utm_source=copy