CV-掩码模型:MAE、SimMIM

本文介绍了SimMIM——一种基于VIT的简单掩码图像建模框架。该工作由微软亚研院提出,并提供了PyTorch实现代码。文章探讨了自监督学习下掩码技术的应用及其实现细节。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

MAE发布以来,各种使用掩码技术的自监督掩码模型在其基础之上有了更进一步的研究。在本文中我们将探索一篇和MAE同期的工作:SimMIM: A Simple Framework for Masked Image Modeling,研究团队是微软亚研院,并在PyTorch中编写它,最后我们也会提供相关的代码。

SimMIM的骨干网络是VIT,熟悉自监督学习的基础知识也非常有帮助,最后我们还要精通PyTorch,因为我们使用它来实现我们的模型。

更简单的掩码图像建模框架SimMIM介绍和PyTorch代码实现

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值