Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below.
For example, given the following triangle
[ [2], [3,4], [6,5,7], [4,1,8,3] ]
The minimum path sum from top to bottom is 11
(i.e., 2 + 3 + 5 + 1 =
11).
Note:
Bonus point if you are able to do this using only O(n) extra space, where n is the total number of rows in the triangle.
要求空间复杂度不超过n
class Solution {
public:
int minimumTotal(vector<vector<int>>& triangle) {
int n = triangle.size();
vector<int> res(n);
res[0] = triangle[0][0];
for(int i = 1; i < n; i++)
{
res[i] = res[i-1] + triangle[i][i];
for(int j = i-1; j > 0; j--)
{
res[j] = triangle[i][j] + min(res[j-1], res[j]);
}
res[0] = res[0] + triangle[i][0];
}
int min = res[0];
for(int i = 1; i < n; i++)
{
if(res[i] < min)
min = res[i];
}
return min;
}
};
另外看到一个更神的解法,不用开辟空间,只是原数组会修改。
class Solution {
public:
int minimumTotal(vector<vector<int> > &triangle) {
for (int i = triangle.size() - 2; i >= 0; --i)
for (int j = 0; j < i + 1; ++j){
if(triangle[i+1][j] > triangle[i+1][j+1]){
triangle[i][j] += triangle[i+1][j+1];
}else{
triangle[i][j] += triangle[i+1][j];
}
}
return triangle[0][0];
}
};