SPASS-ARIMA模型

ARIMA模型是用于非平稳时间序列预测的重要工具,结合差分操作与ARMA模型。本文介绍了ARIMA的基本概念、统计原理,包括ARMA过程、识别方法,并通过SPSS进行实例分析,展示了如何识别和应用ARIMA模型对时间序列数据进行建模和预测。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

基本概念  

        在预测中,对于平稳的时间序列,可用自回归移动平均(AutoRegres- sive Moving Average, ARMA)模型及特殊情况的自回归(AutoRegressive, AR)模型、移动平均(Moving Average, MA)模型等来拟合,预测该时间序列的未来值,但在实际的经济预测中,随机数据序列往往都是非平稳的,此时就需要对该随机数据序列进行差分运算,进而得到ARMA模型的推广——ARIMA模型。           ARIMA模型全称综合自回归移动平均(AutoRegressive Integrated Moving Average)模型,简记为ARIMA(p, d, q)模型,其中AR是自回归,p为自回归阶数;MA为移动平均,q为移动平均阶数;d为时间序列成为平稳时间序列时所做的差分次数。ARIMA(p, d, q)模型的实质就是差分运算与ARMA(p, q)模型的组合,即ARMA(p, q)模型经d次差分后,便为ARIMA(p, d, q)。 

统计原理  

ARMA过程

        

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

世润

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值