leetcode---Unique Paths II---动规

本文介绍了一个基于动态规划算法的问题——在包含障碍物的网格中计算从起点到终点的不同路径数量。文章提供了一种有效的实现方法,并通过代码示例详细解释了如何避免障碍并计算可行路径。

Follow up for “Unique Paths”:

Now consider if some obstacles are added to the grids. How many unique paths would there be?

An obstacle and empty space is marked as 1 and 0 respectively in the grid.

For example,
There is one obstacle in the middle of a 3x3 grid as illustrated below.

[
[0,0,0],
[0,1,0],
[0,0,0]
]
The total number of unique paths is 2.

Note: m and n will be at most 100.

class Solution {
public:
    int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) 
    {
        int row = obstacleGrid.size();
        int col = obstacleGrid[0].size();
        int dp[101][101];
        memset(dp, 0, sizeof(dp));
        dp[0][0] = obstacleGrid[0][0] == 0? 1 : 0;
        for(int i=1; i<row; i++)
            if(obstacleGrid[i][0] == 0)
                dp[i][0] = dp[i-1][0];
        for(int i=1; i<col; i++)
            if(obstacleGrid[0][i] == 0)
                dp[0][i] = dp[0][i-1];
        for(int i=1; i<row; i++)
            for(int j=1; j<col; j++)
                dp[i][j] = obstacleGrid[i][j]==0? dp[i-1][j] + dp[i][j-1] : 0;
        return dp[row-1][col-1];
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值