[leet code] Unique Paths

本文探讨了一个机器人在限定网格中从左上角到右下角的不同路径数量问题。提供了两种解决方案:递归方法和迭代方法,并详细解释了迭代方法的具体实现。

A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below).

The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked 'Finish' in the diagram below).

How many possible unique paths are there?


Above is a 3 x 7 grid. How many possible unique paths are there?

Note: m and n will be at most 100.

=============

Analysis:

Similar problem as Minimum Path Sum.  Actually, this problem is even easier because we don't need to compare the value of each path.  Therefore, two approaches can be used in this problem, i.e. recursive approach (time limit excessed) and iteration approach.  Algorithms of which can be referred to Minimum Path Sum.

Recursive:

public class Solution {
	static int count;
	public static int uniquePaths(int m, int n) {
		if (m == 0 || n == 0)
			return 0;
		if (m == 1 || n == 1)
			return 1;

		count = 0;
		helper(m, n, 0, 0);
		return count;
	}

	public static void helper(int m, int n, int row, int col) {
		// exit: robot reached the bottom-right corner
		if (row == m - 1 && col == n - 1) {
			count++;
			return;
		}

		// case1: robot at the bottom
		if (row == m - 1) {
			helper(m, n, row, col + 1);
		}

		// case2: robot at the right most
		if (col == n - 1) {
			helper(m, n, row + 1, col);
		}

		// case3: robot in the grid body
		if (row != m - 1 && col != n - 1) {
			helper(m, n, row, col + 1);
			helper(m, n, row + 1, col);
		}

		return;
	}
}



 Iteration approach: 

public class Solution {
    public int uniquePaths(int m, int n) {
        if(m==0 || n==0) return 0;
        if(m ==1 || n==1) return 1;
        
        int[][] path = new int[m][n];
        
        // 1st row only 1 path
        for (int i=0; i<n; i++)
            path[0][i] = 1;
        
        // 1st column only 1 path
        for (int i=0; i<m; i++)
            path[i][0] = 1;
        
        // for each body node, number of path = paths from top + paths from left
        for (int i=1; i<m; i++){
            for (int j=1; j<n; j++){
                path[i][j] = path[i-1][j] + path[i][j-1];
            }
        }
        
        return path[m-1][n-1];
    }
}

Basic idea: Construct a m*n grid to hold the number of paths up to current element in the original grid.  Due to the robot can move only to right or down, there are only one path through out the first row and first column.  For the elements which are not in the first row or fist column, its previous element can be from top, or from left.  Therefore, the number of paths up to this element is adding paths from top and paths from left.  For example:

111
123
136
Newly constructed 3*3 path grid corresponding to the 3*3 original grid.

Elements in 1 row and 1 column are all initiated to 1, because there can only be 1 path respectively.

For the element path[1][1], it equals to the number of paths from its top path[0][1] + the number of paths from its left path[1][0].  


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值