设dp[i][j]表示使用i个砖块,最后一个台阶的方块数量为j的不同方案数(先不考虑条件Every staircase consists of at least two steps)
那么状态转移方程即为dp[i][j] = ∑dp[i-j][k] (0 <= k <= min{i - j, j - 1})
最后考虑每个楼梯都必须包含至少两层,这时只需要最终答案减1便可
#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
const int N = 505;
LL dp[N][N];
int main() {
int n; scanf("%d", &n);
memset(dp, 0, sizeof(dp));
dp[0][0] = 1;
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= i; j++) {
for (int k = 0; k <= min(i - j, j - 1); k++) {
dp[i][j] += dp[i-j][k];
}
}
}
LL ans = 0;
for (int i = 0; i <= n; i++)
ans += dp[n][i];
printf("%lld\n", ans - 1);
return 0;
}