逻辑回归(Logistics Regression)

逻辑回归,虽然名字中带有“回归”,但却是解决分类问题的一种基础算法。本文主要介绍其原理。

逻辑回归采用最大似然概率作为其损失函数,最大似然概率为:

max\prod_{i=1}^{N}p(y_{i}|x_{i}, w, b) \ \ \ \ \ \ \ \ \ \ \(1)

对于二分类问题

\begin{aligned} p_{1} = p(y=1|x,w,b) = \frac{1}{1+e^{-(w\cdot x+b)}}, \ y=1\ \ \ \ \ \ \ (2) \\ p_{0} = p(y=0|x,w,b) = \frac{1}{1+e^{-(w\cdot x+b)}}, \ y=0\ \ \ \ \ \ \ (3) \end{aligned}

将以上(2)和(3)进行合并

p(y|x,w,b)=p_{1}^{y_{i}}\cdot p_{0}^{1-y_{i}} \ \ \ \ \ \ \ \ \ (4)

将(4)代入(1),再取对数

max \sum_{i=1}^{N}[y_{i}\cdot log\phi (x_{i})+(1-y_{i})\cdot log(1-\phi (x_{i}))] \ \ \ \ \ \ \ \ (5)

其中,\phi (x_{i}) = p_{0}=p_{1}= \frac{1}{1+e^{-(w\cdot x_{i}+b)}}

则,逻辑回归的损失函数可写为:

L = -\frac{1}{N} \sum_{i=1}^{N}[y_{i}\cdot log\phi (x_{i})+(1-y_{i})\cdot log(1-\phi (x_{i}))] \ \ \ \ \ \ \ \ (6)

wb求导

\begin{align*} \ \frac{\partial L}{\partial w}&=-\frac{1}{N}\sum_{i=1}^{N}[y_{i}\cdot \frac{1}{\phi (x_{i})}\cdot \frac{\partial \phi (x_{i})}{\partial w}-(1-y_{i})\cdot \frac{1}{1-\phi (x_{i})}\cdot \frac{\partial \phi x_{i}}{\partial w}] \\ &=-\frac{1}{N}\sum_{i=1}^{N}\frac{y_{i}-\phi (x_{i})}{\phi (x_{i})\cdot(1-\phi (x_{i}))} \cdot \frac{\partial \phi (x_{i})}{\partial w} \\ &=-\frac{1}{N}\sum_{i=1}^{N}[y_{i}-\phi (x_{i})]\cdot x_{i} \ \ \ \ \ \ \ \ \ \ \ (7) \end{align*}

\begin{align*} \ \frac{\partial L}{\partial b}&=-\frac{1}{N}\sum_{i=1}^{N}[y_{i}\cdot \frac{1}{\phi (x_{i})}\cdot \frac{\partial \phi (x_{i})}{\partial b}-(1-y_{i})\cdot \frac{1}{1-\phi (x_{i})}\cdot \frac{\partial \phi x_{i}}{\partial b}] \\ &=-\frac{1}{N}\sum_{i=1}^{N}\frac{y_{i}-\phi (x_{i})}{\phi (x_{i})\cdot(1-\phi (x_{i}))} \cdot \frac{\partial \phi (x_{i})}{\partial b} \\ &=-\frac{1}{N}\sum_{i=1}^{N}[y_{i}-\phi (x_{i})] \ \ \ \ \ \ \ \ \ \ \ (8) \end{align*}.

训练过程中,参数更新

\begin{align*} w:&=w-\lambda\cdot\frac{\partial L}{\partial w} = w+\lambda\cdot \frac{1}{N}\sum_{i=1}^{N}[y_{i}-\phi (x_{i})]\cdot x_{i} \ \ \ \ \ \ \ \ (9) \\ b:&= b-\lambda\cdot\frac{\partial L}{\partial b} =b+\lambda\cdot\frac{1}{N}\sum_{i=1}^{N}[y_{i}-\phi (x_{i})] \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (10) \end{align*}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值