最大和子阵(动态规划)

本文介绍了一种将二维矩阵转化成一维数组的技术,通过求解最大子数组和来找到矩阵中最大的累加值。使用动态规划方法遍历矩阵,将每行元素与前一行进行累加,再利用 Kadane 算法找出最大子数组的和,最终得到整个矩阵的最大累加值。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

实际上就是求出各行之间对应的列累加的排列组合,将二维转化为一维
就是最长和字串的扩展

#include <iostream>
#include <algorithm>
#include <string.h>
using namespace std;
int num[500][500];
int result = -1005;
int main () {
	int n, m;
	cin >> n >> m;
	for (int i = 0; i < n; i++) {
		for (int j = 0; j < m; j++) {
			cin >> num[i][j];
		}
	}
	for (int i = 0; i < n; i++) {
		int *p = new int[m];
		memset(p, 0, sizeof(p) * m);
		for (int j = i; j < n; j++) {
			int *dp = new int[m];
			for (int k = 0; k < m; k++) {
				p[k] = p[k] + num[j][k];
				dp[k] = p[k];
			}
			result = max(result, dp[0]);
			for (int k = 1; k < m; k++) {
				dp[k] = max(dp[k], dp[k] + dp[k - 1]);
				result = max(result, dp[k]);
			}
			delete []dp;
		}
		delete []p;
	}
	cout << result << endl;
	return 0;
} 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值