在智能驾驶领域,D* Lite 算法是一种高效的动态路径规划算法,适用于处理环境变化时的路径重规划问题。以下将为你展示 D* Lite 算法的高级用法,包含动态障碍物处理、多步预测和启发式函数优化等方面的代码实现。
代码实现
import heapq
import math
# 地图类,用于管理地图信息和更新
class Map:
def __init__(self, grid):
self.grid = grid
self.rows = len(grid)
self.cols = len(grid[0])
def get_neighbors(self, node):
x, y = node
neighbors = []
for dx, dy in [(0, 1), (0, -1), (1, 0), (-1, 0), (1, 1), (1, -1), (-1, 1), (-1, -1)]:
new_x, new_y = x + dx, y + dy
if 0 <= new_x < self.rows and 0 <= new_y < self.cols and self.grid[new_x][new_y] == 0:
neighbors.append((new_x, new_y))
return neighbors
def update_cell(self, x, y, new_value):
self.grid[x][y] = new_value
def is_obstacle(self, node):
x, y = node
return self.grid[x][y] == 1
# 节点类,用于存储节点信息
class Node:
def __init__(self, x, y):
self.x = x
self.y = y
self.g = float('inf')
self.rhs = float('inf')
self.key = [float('inf'), float('inf')]
def __lt__(self, other):
return self.key < other.key
# 优化的启发式函数:考虑对角线移动的欧几里得距离
def heuristic(a, b):
dx = abs(a[0] - b[0])
dy = abs(a[1] - b[1])
return math.sqrt(dx**2 + dy**2)
# 计算节点的键值
def calculate_key(node, s_start, k_m):
node.key = [min(node.g, node.rhs) + heuristic((node.x, node.y), s_start) + k_m,
min(node.g, node.rhs)]
return node
# 初始化 D* Lite 算法
def initialize(s_start, s_goal):
U = []
nodes = {}
for i in range(map_obj.rows):
for j in range(map_obj.cols):
node = Node(i, j)
nodes[(i, j)] = node
s_goal_node = nodes[s_goal]
s_goal_node.rhs = 0
s_goal_node = calculate_key(s_goal_node, s_start, 0)
heapq.heappush(U, s_goal_node)
return U, nodes
# 更新节点的 rhs 值
def update_vertex(U, node, s_start, k_m):
if node.g != node.rhs:
node = calculate_key(node, s_start, k_m)
for i, n in enumerate(U):
if n.x == node.x and n.y == node.y:
U[i] = node
heapq.heapify(U)
break
else:
heapq.heappush(U, node)
else:
for i, n in enumerate(U):
if n.x == node.x and n.y == node.y:
U.pop(i)
heapq.heapify(U)
break
# 计算最短路径
def compute_shortest_path(U, s_start, nodes, k_m):
while U and (U[0].key < calculate_key(nodes[s_start], s_start, k_m) or
nodes[s_start].rhs > nodes[s_start].g):
u = heapq.heappop(U)
if u.g > u.rhs:
u.g = u.rhs
else:
u.g = float('inf')
update_vertex(U, u, s_start, k_m)
for neighbor in map_obj.get_neighbors((u.x, u.y)):
neighbor_node = nodes[neighbor]
if neighbor != s_start:
cost = 1
if abs(u.x - neighbor[0]) + abs(u.y - neighbor[1]) == 2:
cost = math.sqrt(2) # 对角线移动代价
neighbor_node.rhs = min(neighbor_node.rhs,
u.g + cost)
update_vertex(U, neighbor_node, s_start, k_m)
# 动态障碍物处理和多步预测
def handle_dynamic_obstacles(U, nodes, s_start, s_goal, k_m, dynamic_obstacles):
for obstacle in dynamic_obstacles:
obstacle_node = nodes[obstacle]
map_obj.update_cell(obstacle[0], obstacle[1], 1)
for neighbor in map_obj.get_neighbors(obstacle):
neighbor_node = nodes[neighbor]
neighbor_node.rhs = float('inf')
update_vertex(U, neighbor_node, s_start, k_m)
compute_shortest_path(U, s_start, nodes, k_m)
# 路径规划函数
def d_star_lite(s_start, s_goal, dynamic_obstacles=[]):
U, nodes = initialize(s_start, s_goal)
k_m = 0
compute_shortest_path(U, s_start, nodes, k_m)
path = []
current = s_start
while current != s_goal:
path.append(current)
neighbors = map_obj.get_neighbors(current)
min_rhs = float('inf')
next_node = None
for neighbor in neighbors:
neighbor_node = nodes[neighbor]
if neighbor_node.rhs < min_rhs:
min_rhs = neighbor_node.rhs
next_node = neighbor
if next_node is None:
print("未找到可行路径!")
return []
current = next_node
path.append(s_goal)
# 处理动态障碍物
if dynamic_obstacles:
handle_dynamic_obstacles(U, nodes, s_start, s_goal, k_m, dynamic_obstacles)
path = []
current = s_start
while current != s_goal:
path.append(current)
neighbors = map_obj.get_neighbors(current)
min_rhs = float('inf')
next_node = None
for neighbor in neighbors:
neighbor_node = nodes[neighbor]
if neighbor_node.rhs < min_rhs:
min_rhs = neighbor_node.rhs
next_node = neighbor
if next_node is None:
print("未找到可行路径!")
return []
current = next_node
path.append(s_goal)
return path
# 示例地图
map_grid = [
[0, 0, 0, 0, 0],
[0, 1, 1, 0, 0],
[0, 0, 0, 0, 0],
[0, 0, 1, 1, 0],
[0, 0, 0, 0, 0]
]
map_obj = Map(map_grid)
# 起点和终点
s_start = (0, 0)
s_goal = (4, 4)
# 初始路径规划
path = d_star_lite(s_start, s_goal)
if path:
print("初始规划的路径:", path)
# 模拟动态障碍物出现
dynamic_obstacles = [(2, 2)]
path = d_star_lite(s_start, s_goal, dynamic_obstacles)
if path:
print("出现动态障碍物后重新规划的路径:", path)
代码解释
1. 地图类(Map)
get_neighbors:不仅考虑上下左右移动,还考虑了对角线移动,扩大了节点的搜索范围。is_obstacle:判断节点是否为障碍物。
2. 节点类(Node)
- 存储节点的坐标、
g值(从起点到该节点的实际代价)、rhs值(到该节点的最短路径的估计代价)和键值key。
3. 启发式函数(heuristic)
- 采用考虑对角线移动的欧几里得距离作为启发式函数,更准确地估计节点到目标节点的代价。
4. D* Lite 算法核心函数
initialize:初始化算法,创建节点字典和优先队列U,将目标节点加入队列。calculate_key:计算节点的键值,用于优先队列的排序。update_vertex:更新节点的rhs值,并根据情况更新优先队列。compute_shortest_path:计算最短路径,不断更新节点的g和rhs值,直到找到最短路径或队列为空。
5. 动态障碍物处理和多步预测
handle_dynamic_obstacles:处理动态障碍物的出现,更新受影响节点的rhs值,并重新计算最短路径。
6. 路径规划函数(d_star_lite)
- 主路径规划函数,先进行初始路径规划,若存在动态障碍物,则调用
handle_dynamic_obstacles重新规划路径。
注意事项
- 代码中的动态障碍物处理是简单模拟,实际应用中需要结合传感器数据实时更新障碍物信息。
- 启发式函数和移动代价的计算可以根据具体场景进行调整,以提高路径规划的效率和准确性。
- 代码中未考虑车辆的运动学约束,实际智能驾驶中需要进一步考虑车辆的转弯半径、速度限制等因素。
344

被折叠的 条评论
为什么被折叠?



