16、同步FIFO与SRAM/ROM控制器的设计与仿真

同步FIFO与SRAM/ROM控制器设计仿真

同步FIFO与SRAM/ROM控制器的设计与仿真

1. 同步FIFO仿真

1.1 同步FIFO的仿真思路

同步FIFO的仿真开始时,以快速写入、慢速读取的方式填充FIFO。当FIFO填满后,改变读写频率,变为慢速写入、快速读取,直至FIFO清空,仿真结束。

1.2 代码定义与模块声明

// DEFINES
`define DEL 1
// Clock-to-output delay. Zero
// time delays can be confusing
// and sometimes cause problems.
`define FIFO_DEPTH 15
// Depth of FIFO (number of bytes)
`define FIFO_HALF 8
// Half depth of FIFO
// (this avoids rounding errors)
`define FIFO_WIDTH 8
// Width of FIFO data

// TOP MODULE
module afifo_sim();
    // INPUTS
    // OUTPUTS
    // INOUTS
    // SIGNAL DECLARATIONS
    reg clr_n;
    reg  [`FIFO_WIDTH-1:0] in_data;
    reg read_n;
    reg write_n;
    wire [`FIFO_WIDTH-1:0] out_data;
    wire full;
    wire empty;
    wire h
【四轴飞行器】非线性三自由度四轴飞行器模拟器研究(Matlab代码实现)内容概要:本文围绕非线性三自由度四轴飞行器的建模仿真展开,重点介绍了基于Matlab的飞行器动力学模型构建控制系统设计方法。通过对四轴飞行器非线性运动方程的推导,建立其在三维空间中的姿态位置动态模型,并采用数值仿真手段实现飞行器在复杂环境下的行为模拟。文中详细阐述了系统状态方程的构建、控制输入设计以及仿真参数设置,并结合具体代码实现展示了如何对飞行器进行稳定控制轨迹跟踪。此外,文章还提到了多种优化控制策略的应用背景,如模型预测控制、PID控制等,突出了Matlab工具在无人机系统仿真中的强大功能。; 适合人群:具备一定自动控制理论基础和Matlab编程能力的高校学生、科研人员及从事无人机系统开发的工程师;尤其适合从事飞行器建模、控制算法研究及相关领域研究的专业人士。; 使用场景及目标:①用于四轴飞行器非线性动力学建模的教学科研实践;②为无人机控制系统设计(如姿态控制、轨迹跟踪)提供仿真验证平台;③支持高级控制算法(如MPC、LQR、PID)的研究对比分析; 阅读建议:建议读者结合文中提到的Matlab代码仿真模型,动手实践飞行器建模控制流程,重点关注动力学方程的实现控制器参数调优,同时可拓展至多自由度或复杂环境下的飞行仿真研究。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值