leetcode Word Subsets

本文介绍了一种算法,用于从两个字符串数组中找出所有包含B数组中每个元素子集的A数组中的单词。通过实例展示了如何使用Counter类来比较字符频率,确保A数组中的单词能覆盖B数组中所有单词的字符需求。

We are given two arrays A and B of words.  Each word is a string of lowercase letters.

Now, say that word b is a subset of word a if every letter in b occurs in aincluding multiplicity.  For example, "wrr" is a subset of "warrior", but is not a subset of "world".

Now say a word a from A is universal if for every b in Bb is a subset of a

Return a list of all universal words in A.  You can return the words in any order.

 

Example 1:

Input: A = ["amazon","apple","facebook","google","leetcode"], B = ["e","o"]
Output: ["facebook","google","leetcode"]

Example 2:

Input: A = ["amazon","apple","facebook","google","leetcode"], B = ["l","e"]
Output: ["apple","google","leetcode"]

Example 3:

Input: A = ["amazon","apple","facebook","google","leetcode"], B = ["e","oo"]
Output: ["facebook","google"]

Example 4:

Input: A = ["amazon","apple","facebook","google","leetcode"], B = ["lo","eo"]
Output: ["google","leetcode"]

Example 5:

Input: A = ["amazon","apple","facebook","google","leetcode"], B = ["ec","oc","ceo"]
Output: ["facebook","leetcode"]

 

Note:

  1. 1 <= A.length, B.length <= 10000
  2. 1 <= A[i].length, B[i].length <= 10
  3. A[i] and B[i] consist only of lowercase letters.
  4. All words in A[i] are unique: there isn't i != j with A[i] == A[j].

Accepted

15,865

Submissions

34,051

--------------------------------------------------------------------------------

TLE code without merging required characters:

from collections import Counter

class Solution:
    def a_contains_b(self, a, b):
        for k,v in b.items():
            if (k not in a or (k in a and a[k] < v)):
                return False
        return True

    def contains_all(self, a, b_list):
        for b in b_list:
            is_contain = self.a_contains_b(a,b)
            if (is_contain == False):
                return False
        return True

    def wordSubsets(self, A, B):
        b_list = []
        for b in B:
            b_list.append(Counter(b))
        res = []
        for a in A:
            c_a = Counter(a)
            if (self.contains_all(c_a, b_list)):
                res.append(a)
        return res

s = Solution()
print(s.wordSubsets(["amazon","apple","facebook","google","leetcode"],["l","e"]))

Merge required characters:

from collections import Counter

class Solution:
    def a_contains_b(self, a, b):
        for k,v in b.items():
            if (k not in a or (k in a and a[k] < v)):
                return False
        return True

    def wordSubsets(self, A, B):
        required_letter = Counter()
        for b in B:
            b_c = Counter(b)
            for k,v in b_c.items():
                if (k not in required_letter or (k in required_letter and required_letter[k] < v)):
                    required_letter[k] = v
        res = []
        for a in A:
            c_a = Counter(a)
            if (self.a_contains_b(c_a, required_letter)):
                res.append(a)
        return res

s = Solution()
print(s.wordSubsets(["amazon","apple","facebook","google","leetcode"],["e","o"]))

 

### LeetCode 刷题推荐列表与学习路径 在 LeetCode 上进行刷题时,制定一个合理的计划非常重要。以下是一个基于算法分类的学习路径和推荐题目列表[^1]: #### 学习路径 1. **基础算法理论** 在开始刷题之前,建议先通过视频或书籍了解基本的算法理论。例如,分治法、贪心算法、动态规划、二叉搜索树(BST)、图等概念[^1]。 2. **数据结构基础** 熟悉常见的数据结构,包括数组、链表、栈、队列、哈希表、树、图等。确保对这些数据结构的操作有深刻理解。 3. **分模块刷题** 按照以下顺序逐步深入: - 树:从简单的遍历问题(如前序、中序、后序遍历)开始,逐渐过渡到复杂问题(如二叉搜索树验证、平衡二叉树等)。 - 图与回溯算法:学习图的表示方法(邻接矩阵、邻接表),并练习深度优先搜索(DFS)和广度优先搜索(BFS)。结合回溯算法解决组合问题、排列问题等。 - 贪心算法:选择一些经典的贪心问题(如活动选择问题、区间覆盖问题)进行练习。 - 动态规划:从简单的 DP 问题(如爬楼梯、斐波那契数列)入手,逐步掌握状态转移方程的设计技巧。 4. **刷题策略** 刷题时优先选择简单或中等难度的题目,并关注通过率较高的题目。这有助于建立信心并巩固基础知识[^1]。 #### 推荐题目列表 以下是按算法分类的 LeetCode 题目推荐列表: 1. **树** - [104. 二叉树的最大深度](https://leetcode-cn.com/problems/maximum-depth-of-binary-tree/) - [94. 二叉树的中序遍历](https://leetcode-cn.com/problems/binary-tree-inorder-traversal/) - [236. 二叉树的最近公共祖先](https://leetcode-cn.com/problems/lowest-common-ancestor-of-a-binary-search-tree/) 2. **图与回溯** - [79. 单词搜索](https://leetcode-cn.com/problems/word-search/) - [51. N皇后](https://leetcode-cn.com/problems/n-queens/) - [78. 子集](https://leetcode-cn.com/problems/subsets/) 3. **贪心** - [455. 分发饼干](https://leetcode-cn.com/problems/assign-cookies/) - [135. 分发糖果](https://leetcode-cn.com/problems/candy/) - [406. 根据身高重建队列](https://leetcode-cn.com/problems/queue-reconstruction-by-height/) 4. **动态规划** - [70. 爬楼梯](https://leetcode-cn.com/problems/climbing-stairs/) - [53. 最大子数组和](https://leetcode-cn.com/problems/maximum-subarray/) - [300. 最长递增子序列](https://leetcode-cn.com/problems/longest-increasing-subsequence/) #### 示例代码 以下是一个简单的动态规划问题示例——“不同路径”[^3]: ```python def uniquePaths(m, n): dp = [[1] * n for _ in range(m)] for i in range(1, m): for j in range(1, n): dp[i][j] = dp[i-1][j] + dp[i][j-1] return dp[-1][-1] # 测试用例 print(uniquePaths(3, 2)) # 输出:3 ``` ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值