Multi-agent and distributed RL [Topic under construction]

本文探讨了在多智能体环境中应用强化学习的挑战与解决方案,重点介绍了rollout策略的应用,该策略通过逐个考虑智能体的动作来简化行动空间,同时保持较高的决策质量。文章还讨论了分布式强化学习的基本思想,包括Q并行化、蒙特卡洛并行化等技术,旨在通过分解问题和近似计算提高效率。

It's unrealistic to consider the environement as static with only one agent: it's almost always necessary to consider the reaction of multiple agents on each others' moves. With multiple agent, the space of control (action) becomes exponentially large on the number of agents. That is, for a binary action, with 10 agent, the possible action vector values would become 2^10. Some techniques are needed to deal with this large space.

As mentioned in https://www.youtube.com/watch?v=nTPuL6iVuwU, a talk by Bertsekas, rollout policy is discussed, which consider that all agents take an action sequentially, one by one, reducing the action space from n^m to nm, without much loss on the quality.

 

Distributed RL works on how to decompose the problem and make approximations by asymchronous computing. Some basic ideas are:

- Q-parallelization. Parallelize on the argmax part of Q-learning, i.e. when estimate the one-step look ahead value after each possible action

- Monte-carlo parallelization

- Multi-agent parallelization: use the multi-agent rollout method plus the two parallelization above

- Multi-processor parallelization: State-space partition. Make policy/value approximation on each subset.

Note that rollout also have many application on discrete/combinatorial problems. 

分布式多智能体路径规划(Distributed Multi - Agent Path Finding,DMPF)旨在解决多个智能体在共享环境中如何高效、无冲突地规划各自路径的问题。 ### 解决方案 - **基于协商的方法**:智能体之间通过通信协商来协调路径,避免冲突。例如,智能体可以交换自己的计划路径信息,当检测到冲突时,通过协商重新规划路径。 - **基于优先级的方法**:为每个智能体分配一个优先级,高优先级的智能体优先规划路径,低优先级的智能体在规划时需要避免与高优先级智能体的路径冲突。 ### 算法 - **分布式A*算法**:A*算法是一种经典的路径搜索算法,分布式A*算法将其扩展到多智能体环境中。每个智能体独立运行A*算法进行路径搜索,同时与其他智能体进行通信以避免冲突。 ```python # 简单的A*算法示例 import heapq def heuristic(a, b): return abs(a[0] - b[0]) + abs(a[1] - b[1]) def astar(array, start, goal): neighbors = [(0, 1), (0, -1), (1, 0), (-1, 0)] close_set = set() came_from = {} gscore = {start: 0} fscore = {start: heuristic(start, goal)} oheap = [] heapq.heappush(oheap, (fscore[start], start)) while oheap: current = heapq.heappop(oheap)[1] if current == goal: data = [] while current in came_from: data.append(current) current = came_from[current] return data close_set.add(current) for i, j in neighbors: neighbor = current[0] + i, current[1] + j tentative_g_score = gscore[current] + heuristic(current, neighbor) if 0 <= neighbor[0] < array.shape[0]: if 0 <= neighbor[1] < array.shape[1]: if array[neighbor[0]][neighbor[1]] == 1: continue else: # array bound y walls continue else: # array bound x walls continue if neighbor in close_set and tentative_g_score >= gscore.get(neighbor, 0): continue if tentative_g_score < gscore.get(neighbor, 0) or neighbor not in [i[1] for i in oheap]: came_from[neighbor] = current gscore[neighbor] = tentative_g_score fscore[neighbor] = tentative_g_score + heuristic(neighbor, goal) heapq.heappush(oheap, (fscore[neighbor], neighbor)) return None ``` - **冲突基于搜索算法(CBS)**:该算法通过识别智能体之间的冲突,并将其分解为子问题进行求解,逐步找到无冲突的路径。 ### 研究成果 - 在机器人领域,分布式多智能体路径规划算法被广泛应用于多机器人协作任务,如仓库物流中的货物搬运、智能交通系统中的自动驾驶车辆协调等。 - 学术界不断提出新的算法理论,以提高分布式多智能体路径规划的效率性能,例如通过引入机器学习技术来优化路径规划过程。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值