Can agents learn inside of their own dreams?

本文探讨NIPS2018中关于WorldModels在强化学习领域的研究,介绍如何使用大型RNN对环境状态转换进行预测,以辅助行动决策。文章强调了RNN在表达复杂时空数据上的优势,并提出由视觉、记忆和控制器三部分组成的智能体模型。

这次阅读一篇NIPS2018的文章,关于World Models in Reinforcement Learning. 原文链接

按照惯例,直接上粗暴的摘要和笔记吧

  1. Large RNNs are highly expressive models that can learn rich spatial and temporal representations of data. However, many model-free RL methods in the literature often only use small neural networks with few parameters. The RL algorithm is often bottlenecked by the credit assignment problem1, which makes it hard for traditional RL algorithms to learn millions of weights of a large model, hence in practice, smaller networks are used as they iterate faster to a good policy during training.
  2. 精髓在这张图里了,引入了RNN来对environment中的state transition进行一定程度的预测,基于预测来选择action。

  3. Our agent consists of three components that work closely together: Vision (V), Memory (M), and Controller (C).

 

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值