动态规划之判断一个字符串是否是由另2个字符串交错组成的

本文介绍了一种使用动态规划解决交错字符串问题的算法。通过构建dp表来判断第三个字符串是否能由前两个字符串交错组成,详细解释了算法的实现过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

现在有3个字符串s1,s2,s3,我们需要判断s3是否是由s1和s2交错组成的。对于三个字符串A,B,C。我们称C由A和B交错组成当且仅当C包含且仅包含A,B中所有字符,且对应的顺序不改变。

dp表代表当s1在i处是交错的同时s2在j处是交错的s3在i+j处是否是交错的。

如果s1和s2在当前位置是空,s3也是空,则我们视为true;如果s1是空,s2之前的位置是交错的而且s2在当前位置和s3的当前位置字符是一样的,则视为true;反之s2为空时情况是一样的。

考虑s1和s2都不为空的情况。当我们从i-1,j到达i,j处时,如果i-1,j处是交错的而i处与当前的s3一致,则视为true;

当我们从i,j-1到达i,j处时,如果i,j-1处是交错的而j处与当前的s3一致,则视为true;


def solution6(a,b,c):
    dp = [[False for i in range(m + 1)] for j in range(n + 1)]
    dp[0][0] = True
    for i in range(1,n+1):
        dp[i][0] = dp[i-1] and c[i-1] == a[i-1]
    for i in range(m+1):
        dp[0][i] = dp[i-1] and c[i-1] == b[i-1]
    for i in range(1, n + 1):
        for j in range(1, m + 1):
            dp[i][j] = (dp[i-1][j] and a[i-1] == c[i+j-1]) || (dp[i][j-1] and b[j-1] == c[i+j-1])

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值