如何查看TensorRT默认支持的算子(operator)

  • TensorRT7.0支持的ONNX算子列表

https://github.com/onnx/onnx-tensorrt/blob/84b5be1d6fc03564f2c0dba85a2ee75bad242c2e/oper
ators.md

 

Operator Supported? Restrictions
Abs Y
Acos Y
Acosh Y
Add Y
And Y
ArgMax Y
ArgMin Y
Asin Y
Asinh Y
Atan Y
Atanh Y
AveragePool Y 2D or 3D Pooling only
BatchNormalization Y
BitShift N
Cast Y Cast is only supported for TRT types
Ceil Y
Clip Y min and max clip values must be an initializer
Compress N
Concat Y
ConcatFromSequence N
Constant Y
ConstantOfShape Y
Conv Y 2D or 3D convolutions only
ConvInteger N
ConvTranspose Y 2D or 3D deconvolutions only. Weights must be an initializer
Cos Y
Cosh Y
CumSum N
DepthToSpace Y
DequantizeLinear Y Scales and zero-point value must be initializers
Det N
Div Y
Dropout N
Elu Y
Equal Y
Erf Y
Exp Y
Expand Y
EyeLike N
Flatten Y
Floor Y
Gather Y
GatherElements N
GatherND N
Gemm Y
GlobalAveragePool Y
GlobalLpPool N
GlobalMaxPool Y
Greater Y
GRU Y
HardSigmoid Y
Hardmax N
Identity Y
If N
ImageScaler Y
InstanceNormalization Y Scales and biases must be an initializer
IsInf N
IsNaN N
LeakyRelu Y
Less Y
Log Y
LogSoftmax Y
Loop Y
LRN Y
LSTM Y
LpNormalization N
LpPool N
MatMul Y
MatMulInteger N
Max Y
MaxPool Y
MaxRoiPool N
MaxUnpool N
Mean Y
Min Y
Mod N
Mul Y
Multinomial N
Neg Y
NonMaxSuppression N
NonZero N
Not Y
OneHot N
Or Y
Pad Y Zero-padding on last 2 dimensions only
ParametricSoftplus Y
Pow Y
PRelu Y
QLinearConv N
QLinearMatMul N
QuantizeLinear Y Scales and zero-point value must be initializers
RNN N
RandomNormal N
RandomNormalLike N
RandomUniform Y
RandomUniformLike Y
Range Y Float inputs are only supported if start, limit and delta inputs are initializers
Reciprocal N
ReduceL1 Y
ReduceL2 Y
ReduceLogSum Y
ReduceLogSumExp Y
ReduceMax Y
ReduceMean Y
ReduceMin Y
ReduceProd Y
ReduceSum Y
ReduceSumSquare Y
Relu Y
Reshape Y
Resize Y Asymmetric coordinate transformation mode only. Nearest or Linear resizing mode only. "floor" mode only for resize_mode attribute.
ReverseSequence N
RNN Y
RoiAlign N
Round N
ScaledTanh Y
Scan Y
Scatter N
ScatterElements N
ScatterND N
Selu Y
SequenceAt N
SequenceConstruct N
SequenceEmpty N
SequenceErase N
SequenceInsert N
SequenceLength N
Shape Y
Shrink N
Sigmoid Y
Sign N
Sin Y
Sinh Y
Size Y
Slice Y Slice axes must be an initializer
Softmax Y
Softplus Y
Softsign Y
SpaceToDepth Y
Split Y
SplitToSequence N
Sqrt Y
Squeeze Y
StringNormalizer N
Sub Y
Sum Y
Tan Y
Tanh Y
TfIdfVectorizer N
ThresholdedRelu Y
Tile Y
TopK Y
Transpose Y
Unique N
Unsqueeze Y
Upsample Y
Where Y
Xor N

  • TensorRT8.2支持的ONNX算子列表

onnx-tensorrt/operators.md at main · onnx/onnx-tensorrt · GitHub

Operator Supported Supported Types Restrictions
Abs Y FP32, FP16, INT32
Acos Y FP32, FP16
Acosh Y FP32, FP16
Add Y FP32, FP16, INT32
And Y BOOL
ArgMax Y FP32, FP16
ArgMin Y FP32, FP16
Asin Y FP32, FP16
Asinh Y FP32, FP16
Atan Y FP32, FP16
Atanh Y FP32, FP16
AveragePool Y FP32, FP16, INT8, INT32 2D or 3D Pooling only
BatchNormalization Y FP32, FP16
BitShift N
Cast Y FP32, FP16, INT32, INT8, BOOL
Ceil Y FP32, FP16
Celu Y FP32, FP16
Clip Y FP32, FP16, INT8
Compress N
Concat Y FP32, FP16, INT32, INT8, BOOL
ConcatFromSequence N
Constant Y FP32, FP16, INT32, INT8, BOOL
ConstantOfShape Y FP32
Conv Y FP32, FP16, INT8 2D or 3D convolutions only. Weights W must be an initailizer
ConvInteger N
ConvTranspose Y FP32, FP16, INT8 2D or 3D deconvolutions only. Weights W must be an initializer
Cos Y FP32, FP16
Cosh Y FP32, FP16
CumSum Y FP32, FP16 axis must be an initializer
DepthToSpace Y FP32, FP16, INT32
DequantizeLinear Y INT8 x_zero_point must be zero
Det N
Div Y FP32, FP16, INT32
Dropout Y FP32, FP16
DynamicQuantizeLinear N
Einsum Y FP32, FP16 Ellipsis and diagonal operations are not supported. Broadcasting between inputs is not supported
Elu Y FP32, FP16, INT8
Equal Y FP32, FP16, INT32
Erf Y FP32, FP16
Exp Y FP32, FP16
Expand Y FP32, FP16, INT32, BOOL
EyeLike Y FP32, FP16, INT32, BOOL
Flatten Y FP32, FP16, INT32, BOOL
Floor Y FP32, FP16
Gather Y FP32, FP16, INT8, INT32
GatherElements Y FP32, FP16, INT8, INT32
GatherND Y FP32, FP16, INT8, INT32
Gemm Y FP32, FP16, INT8
GlobalAveragePool Y FP32, FP16, INT8
GlobalLpPool Y FP32, FP16, INT8
GlobalMaxPool Y FP32, FP16, INT8
Greater Y FP32, FP16, INT32
GreaterOrEqual Y FP32, FP16, INT32
GRU Y FP32, FP16 For bidirectional GRUs, activation functions must be the same for both the forward and reverse pass
HardSigmoid Y FP32, FP16, INT8
Hardmax N
Identity Y FP32, FP16, INT32, INT8, BOOL
If Y FP32, FP16, INT32, BOOL Output tensors of the two conditional branches must have broadcastable shapes, and must have different names
ImageScaler Y FP32, FP16
InstanceNormalization Y FP32, FP16 Scales scale and biases B must be initializers. Input rank must be >=3 & <=5
IsInf N
IsNaN Y FP32, FP16, INT32
LeakyRelu Y FP32, FP16, INT8
Less Y FP32, FP16, INT32
LessOrEqual Y FP32, FP16, INT32
Log Y FP32, FP16
LogSoftmax Y FP32, FP16
Loop Y FP32, FP16, INT32, BOOL
LRN Y FP32, FP16
LSTM Y FP32, FP16 For bidirectional LSTMs, activation functions must be the same for both the forward and reverse pass
LpNormalization Y FP32, FP16
LpPool Y FP32, FP16, INT8
MatMul Y FP32, FP16
MatMulInteger N
Max Y FP32, FP16, INT32
MaxPool Y FP32, FP16, INT8 2D or 3D pooling only. Indices output tensor unsupported
MaxRoiPool N
MaxUnpool N
Mean Y FP32, FP16, INT32
MeanVarianceNormalization N
Min Y FP32, FP16, INT32
Mod N
Mul Y FP32, FP16, INT32
Multinomial N
Neg Y FP32, FP16, INT32
NegativeLogLikelihoodLoss N
NonMaxSuppression Y [EXPERIMENTAL] FP32, FP16 Inputs max_output_boxes_per_class, iou_threshold, and score_threshold must be initializers. Output has fixed shape and is padded to [max_output_boxes_per_class, 3].
NonZero N
Not Y BOOL
OneHot N
Or Y BOOL
Pad Y FP32, FP16, INT8, INT32
ParametricSoftplus Y FP32, FP16, INT8
Pow Y FP32, FP16
PRelu Y FP32, FP16, INT8
QLinearConv N
QLinearMatMul N
QuantizeLinear Y FP32, FP16 y_zero_point must be 0
RandomNormal N
RandomNormalLike N
RandomUniform Y FP32, FP16 seed value is ignored by TensorRT
RandomUniformLike Y FP32, FP16 seed value is ignored by TensorRT
Range Y FP32, FP16, INT32 Floating point inputs are only supported if start, limit, and delta inputs are initializers
Reciprocal N
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值