USACO-Subset Sums

本文介绍了一种使用动态规划方法解决特定等差数列子集划分问题的算法实现。针对从1到N的连续整数集合,算法能够计算出所有可能将其分为两个和相等子集的方法数量。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

For many sets of consecutive integers from 1 through N (1 <= N <= 39), one can partition the set into two sets whose sums are identical.

For example, if N=3, one can partition the set {1, 2, 3} in one way so that the sums of both subsets are identical:

{3} and {1,2}
This counts as a single partitioning (i.e., reversing the order counts as the same partitioning and thus does not increase the count of partitions).

If N=7, there are four ways to partition the set {1, 2, 3, … 7} so that each partition has the same sum:

{1,6,7} and {2,3,4,5}
{2,5,7} and {1,3,4,6}
{3,4,7} and {1,2,5,6}
{1,2,4,7} and {3,5,6}
Given N, your program should print the number of ways a set containing the integers from 1 through N can be partitioned into two sets whose sums are identical. Print 0 if there are no such ways.

Your program must calculate the answer, not look it up from a table.

PROGRAM NAME: subset
INPUT FORMAT
The input file contains a single line with a single integer representing N, as above.

SAMPLE INPUT (file subset.in)
7
OUTPUT FORMAT
The output file contains a single line with a single integer that tells how many same-sum partitions can be made from the set {1, 2, …, N}. The output file should contain 0 if there are no ways to make a same-sum partition.

SAMPLE OUTPUT (file subset.out)
4

题意:给你从1-n的连续数字,求有多少种将它们平分成两部分的方法。

等差数列求和公式:S=(n+1)*n/2。
要平分,每一部分为S1=(n+1)*n/4,于是在开头判断S1是否为整数,不能则直接不能。
接着dp,最后要除以2,因为会算重复一次。

f[i,j]=f[i-1,j]+f[i-1,j-i] ,j-i>=0
f[i,j]=f[i-1,j] ,j-i<0

代码:

/*
ID:iam666
PROG:subset
LANG:C++
*/
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <queue>
#include <iostream>
using namespace std;
long long dp[800];
int n;
int main (void)
{
    //freopen("subset.in","r",stdin);
    //freopen("subset.out","w",stdout);
    cin>>n;
    if(n*(n+1)%4)
        {
            printf("0\n");
            return 0;
        }
    int re=n*(n+1)/4;
    memset(dp,0,sizeof(dp));
    for(int i=0;i<=n;i++)
    dp[0]=1;
    for(int i=1;i<=n;i++)
    {
        for(int j=re;j>=i;j--)
        {
            dp[j]=dp[j]+dp[j-i];//j比i多出来的数的分法加上原来的分法
        //  printf("%lld___\n",dp[j]);
        }
    //  printf("*******\n");
    }
    printf("%lld\n",dp[re]/2);
    return 0;

}
### USACO 1327 Problem Explanation USACO 1327涉及的是一个贪心算法中的区间覆盖问题。具体来说,这个问题描述了一组奶牛可以工作的班次范围,并要求找出最少数量的奶牛来完全覆盖所有的班次。 对于此类问题的一个有效方法是采用贪心策略[^1]。首先按照区间的结束时间从小到大排序这些工作时间段;如果结束时间相同,则按开始时间从早到晚排列。接着遍历这个有序列表,在每一步都尽可能选择最早能完成当前未被覆盖部分的工作时段。通过这种方式逐步构建最终解集直到所有的时间段都被覆盖为止。 为了提高效率并防止超时错误,建议使用`scanf()`函数代替标准输入流操作符`cin`来进行数据读取处理[^2]。 ```cpp #include <iostream> #include <vector> #include <algorithm> using namespace std; struct Interval { int start; int end; }; bool compareIntervals(const Interval& i1, const Interval& i2) { return (i1.end < i2.end || (i1.end == i2.end && i1.start < i2.start)); } int main() { vector<Interval> intervals = {{1, 7}, {3, 6}, {6, 10}}; sort(intervals.begin(), intervals.end(), compareIntervals); int currentEnd = 0; int count = 0; for (const auto& interval : intervals) { if (interval.start > currentEnd) break; while (!intervals.empty() && intervals.front().start <= currentEnd) { if (intervals.front().end >= interval.end) { interval = intervals.front(); } intervals.erase(intervals.begin()); } currentEnd = interval.end; ++count; if (currentEnd >= 10) break; // Assuming total shift length is known. } cout << "Minimum number of cows needed: " << count << endl; } ``` 此代码片段展示了如何实现上述提到的方法解决该类问题。需要注意的是实际比赛中可能还需要考虑更多边界条件以及优化细节以满足严格的性能需求。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值