递归比较简单
class Solution {
public:
int longestPalindromeSubseq(string s) {
return LFS(s,0,s.size()-1);
}
int LFS(string s,int begin,int end) {
if(begin==end) return 1;
if(begin>end) return 0;
if(s[begin]==s[end])
return LFS(s,begin+1,end-1)+2;
else
return max(LFS(s,begin+1,end),LFS(s,begin,end-1));
}
};
动态规划:dp[i][j]表示i,j之间最长回文串的长度
递推公式如下:dp[i][j]=dp[i+1][j-1]+2 s[i]==s[j]
dp[i][j]=max(dp[i+1][j], dp[i][j-1]) s[i]!=s[j]
class Solution {
public:
int longestPalindromeSubseq(string s) {
int n = s.size();
vector<vector<int>> dp(n, vector<int>(n));
for (int i = n - 1; i >= 0; --i) {
dp[i][i] = 1;
for (int j = i + 1; j < n; ++j) {
if (s[i] == s[j]) {
dp[i][j] = dp[i + 1][j - 1] + 2;
} else {
dp[i][j] = max(dp[i + 1][j], dp[i][j - 1]);
}
}
}
return dp[0][n - 1];
}
};