bp网络实现CPI指标预测

本文通过使用连续三年的CPI数据作为输入,采用BP神经网络进行训练,预测第四年的CPI变化趋势。文中详细展示了数据预处理、网络训练及仿真结果分析的过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 

 

 

某地的CPI指标,d1、d2、d3、f为连续四年的指数,现在选取d1、d2、d3作为网络初始值,f为网络目标值进行训练网络。

具体数据如下:
d1=[0.2356 0.2589 0.3000 0.2445 0.2589 0.2366 0.2897 0.2368 0.2569 0.2010 0.2111 0.3012];
d2=[0.2562 0.3023 0.2454 0.2465 0.2146 0.2037 0.2898 0.2969 0.2110 0.2111 0.2212 0.3213];
d3=[0.3000 0.2458 0.2315 0.2216 0.2317 0.2218 0.2039 0.2510 0.2111 0.2212 0.2313 0.3114 ];
f=[0.2515 0.2146 0.2147 0.2218 0.2169 0.2260 0.2111 0.2212 0.2313 0.2414 0.2115 0.3216 ];

代码如下:

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

superdont

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值