使用二进制位运算,代替十进制乘法(除法)运算

本文介绍了如何在嵌入式环境中利用位运算替代乘法和除法,以提高计算效率。对于乘法,通过因式分解和位移运算来实现;对于除法,原理相似,但当分母不是2的整数倍时,需要进行分母算术分解。文章提供了程序示例并展示了运算结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


  在嵌入式环境中虽然有乘法运算器,而且芯片运算速度越来越快,但位运算还是最快速的,为了提高计算效率,可以将乘法运算使用位运算替换。

乘法

原理

  若被乘数是2的整数倍,可以直接进行左移运算,这个比较简单,本文解释下当被乘数不是2的整数倍的情况,乘法进行位运算替换的基本原理,分两步

  1. 因式分解: A ∗ ( B + C ) = A ∗ B + A ∗ C A * (B + C) = A * B + A * C A(B+C)=AB+AC
  2. 位移替换乘法 : A ∗ 2 n = A &lt; &lt; n A * 2 ^ n = A &lt;&lt; n A2n=A<<n

十进制分解

  以10的整数倍为例,进行10进制替换:
10 = 8 + 2 = 2 3 + 2 1 10 = 8 + 2 = 2^3 + 2^1 10=8+2=23+21
100 = 64 + 32 + 4 = 2 6 + 2 5 + 2 2 100 = 64 + 32 + 4 = 2^6 + 2^5 + 2^2 100=64+32+4=26+25+22
1000 = 1024 − 16 − 8 = 2 10 − 2 4 − 2 3 1000 = 1024 - 16 - 8 = 2^{10} - 2^4 - 2^3 1000=1024168=2102423

程序示例

a = 543
m10 = 10 # 10 = 8 + 2 = 2^3 + 2^1
m100 = 100 # 100 = 64 + 32 + 4 = 2^6 + 2^5 + 2^2
m1000 = 1000 # 1000 = 1024 - 16 - 8 = 2^10 - 2^4 - 2^3

am10_cheng0 = a * m10
am100_cheng0 = a * m100
am1000_cheng0 = a * m1000
am10_cheng1 = (a << 3) + (a << 1)
am100_cheng1 = (a << 6) + (a << 5) + (a << 2)
am1000_cheng1 = (a << 10) - (a << 4) - (a << 3)
print ("乘以10:",am10_cheng0,"  ",am10_cheng1)
print ("乘以100:",am100_cheng0,"  ",am100_cheng1)
print ("乘以1000:",am1000_cheng0,"  ",am1000_cheng1)

运算结果

  将源码保存为python文件,使用python直接执行可以查看结果,结果如下:
在这里插入图片描述

除法

原理

  跟乘法类似,若分母为2的整数倍,则直接进行右移运算,但若分母不是2的整数倍,则需要对分母进行分解。不过由于除法不能直接分解分母,需要将分母作为独立项进行拆分,除法位运算替换的基本原理,分三步

  1. 分子分母分离: B A = B ∗ 1 A \frac{B}{A} =B * \frac{1}{A} AB=BA1
  2. 分母算术分解: 1 A = ∑ 1 2 n \frac{1}{A} =\sum\frac{1}{2^n} A1=2n1
  3. 位移替换乘法 : B 2 n = B &gt; &gt; n \frac{B}{2 ^ n} = B &gt;&gt; n 2nB=B>>n

十进制分解

  由于第二步的分母算术分解不容易,即不容易找到精确解,因此分数分解为 1 2 \frac{1}{2} 21的整数倍的和比较麻烦,而且若需要较高精度则需要更高阶的倍数,即其中的n要很大,以10为例:

1 16 + 1 32 + 1 256 + 1 512 = 0.0996 ≈ 0.1 = 1 10 \frac{1}{16} + \frac{1}{32} + \frac{1}{256} + \frac{1}{512} = 0.0996 \approx0.1=\frac{1}{10} 161+321+2561+5121=0.09960.1=101

  若在有限位内可以找到精确解,即灯饰两边刚好相等,而不是约等于,则可以进行分解运算,但是这样多运算也许并不比直接除法更快,因此如果除法的分母不是2的整数倍,而且并没有确定的分解方式,可以考虑直接使用除法。

1 10 ≈ 1 16 + 1 32 + 1 256 + 1 512 + 1 4096 = 1 2 4 + 1 2 5 + 1 2 8 + 1 2 9 + 1 2 12 \frac{1}{10} \approx \frac{1}{16} + \frac{1}{32} + \frac{1}{256} + \frac{1}{512} + \frac{1}{4096} = \frac{1}{2^4} + \frac{1}{2^5} + \frac{1}{2^8} + \frac{1}{2^9} + \frac{1}{2^{12}} 101161+321+2561+5121+40961=241+251+281+291+2121

程序示例

a = 543
m10 = 10 

# 1/10 ~= 1/16 + 1/32 + 1/256 + 1/512 + 1/4096 
#       = 1/2^4 + 1/2^5 + 1/2^8 + 1/2^9 + 1/2^12
am10_chu0 = int(a / m10)
am10_chu1 = (a >> 4) + (a >> 5) + (a >> 8) + (a >> 9) + (a >> 12)
print ("除以10:",am10_chu0,"  ",am10_chu1)

运算结果

  将源码保存为python文件,使用python直接执行可以查看结果,结果如下:
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

具身小站

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值