There are a total of n courses you have to take, labeled from 0 to n
- 1.
Some courses may have prerequisites, for example to take course 0 you have to first take course 1, which is expressed as a pair: [0,1]
Given the total number of courses and a list of prerequisite pairs, is it possible for you to finish all courses?
For example:
2, [[1,0]]
There are a total of 2 courses to take. To take course 1 you should have finished course 0. So it is possible.
2, [[1,0],[0,1]]
There are a total of 2 courses to take. To take course 1 you should have finished course 0, and to take course 0 you should also have finished course 1. So it is impossible.
public boolean canFinish(int numCourses, int[][] prerequisites) {
List<List<Integer>> g = new ArrayList<>();
for (int i = 0; i < numCourses; i++) {
g.add(new ArrayList<>());
}
for (int i = 0; i < prerequisites.length; i++) {
g.get(prerequisites[i][1]).add(prerequisites[i][0]);
}
boolean[] visited = new boolean[numCourses];
for (int i = 0; i < numCourses; i++) {
if (!dfs(visited, g, i)) return false;
}
return true;
}
private boolean dfs(boolean[] visited, List<List<Integer>> g, int n) {
if (visited[n]) return false;
else visited[n] = true;
List<Integer> neighbors = g.get(n);
for (int v : neighbors) {
if (!dfs(visited, g, v)) return false;
}
visited[n] = false;
return true;
}public boolean canFinish(int numCourses, int[][] prerequisites) {
List<Integer>[] matrix = new List[numCourses];
int[] indegree = new int[numCourses];
// E part
for (int[] pre : prerequisites) {
int preCourse = pre[1];
int readyCourse = pre[0];
List<Integer> list = matrix[preCourse];
if (list == null) {
list = new LinkedList<>();
matrix[preCourse] = list;
}
list.add(readyCourse);
indegree[readyCourse]++;
}
Queue<Integer> queue = new LinkedList<>();
for (int i=0; i<numCourses; i++) {
if (indegree[i] == 0) queue.offer(i);
}
int count = 0;
// V part
while (!queue.isEmpty()) {
int vertex = queue.poll();
count++;
List<Integer> adjacent = matrix[vertex];
if (adjacent == null) continue;
for (int neighbor : adjacent) {
indegree[neighbor]--;
if (indegree[neighbor] == 0)
queue.offer(neighbor);
}
}
return count == numCourses;
}
There are a total of n courses you have to take, labeled from 0 to n
- 1.
Some courses may have prerequisites, for example to take course 0 you have to first take course 1, which is expressed as a pair: [0,1]
Given the total number of courses and a list of prerequisite pairs, return the ordering of courses you should take to finish all courses.
There may be multiple correct orders, you just need to return one of them. If it is impossible to finish all courses, return an empty array.
For example:
2, [[1,0]]
There are a total of 2 courses to take. To take course 1 you should have finished course 0. So the correct course order is [0,1]
4, [[1,0],[2,0],[3,1],[3,2]]
There are a total of 4 courses to take. To take course 3 you should have finished both courses 1 and 2. Both courses 1 and 2 should be taken after you finished course 0. So one correct course order is [0,1,2,3].
Another correct ordering is[0,2,1,3].
把 indegree 是 0 的点加入到 queue 中, 依次添加。
public int[] findOrder(int numCourses, int[][] prerequisites) {
List<List<Integer>> adjLists = new ArrayList<List<Integer>>();
for (int i = 0; i < numCourses; i++) {
adjLists.add(new ArrayList<Integer>());
}
for (int i = 0; i < prerequisites.length; i++) {
adjLists.get(prerequisites[i][1]).add(prerequisites[i][0]);
}
int[] indegrees = new int[numCourses];
for (int i = 0; i < numCourses; i++) {
for (int x : adjLists.get(i)) {
indegrees[x]++;
}
}
Queue<Integer> queue = new LinkedList<Integer>();
for (int i = 0; i < numCourses; i++) {
if (indegrees[i] == 0) {
queue.offer(i);
}
}
int[] res = new int[numCourses];
int count = 0;
while (!queue.isEmpty()) {
int cur = queue.poll();
for (int x : adjLists.get(cur)) {
indegrees[x]--;
if (indegrees[x] == 0) {
queue.offer(x);
}
}
res[count++] = cur;
}
if (count == numCourses) return res;
return new int[0];
}
2 -- tested
public class Graph{
LinkedList<Integer> adj[];
public Graph(int v){
adj = new LinkedList[v];
for(int i=0; i<v; i++){
adj[i] = new LinkedList<>();
}
}
public void addEdge(int s, int d){
adj[s].add(d);
}
}
public boolean topSort(Graph g, int v, Stack<Integer> stack, int[] visited){
if(visited[v] == 1)
return false;
if(visited[v] == 2)
return true;
visited[v] = 1;
for(int i=0; i<g.adj[v].size(); i++){
if(!topSort(g, g.adj[v].get(i), stack, visited)){
return false;
}
}
stack.add(v);
visited[v] = 2;
return true;
}
public int[] findOrder(int n, int[][] reqs) {
if(n==0)
return null;
Graph g = new Graph(n);
int i=0;
if(reqs != null){
for(int[] req: reqs)
g.addEdge(req[1], req[0]);
}
Stack<Integer> stack = new Stack<>();
int[] visited = new int[n];
for(; i<n; i++){
if(!topSort(g, i, stack, visited))
return new int[0];
}
int[] result = new int[n];
i = 0;
while(!stack.isEmpty())
result[i++] = stack.pop();
return result;
}
本文介绍了一种用于解决课程先修顺序问题的算法。该算法通过构建图结构并利用拓扑排序来确定合理的课程学习顺序,确保所有课程都能在满足先决条件的情况下完成。文章提供了两种实现方法:一种使用深度优先搜索检测环,另一种则采用基于队列的拓扑排序算法。
399

被折叠的 条评论
为什么被折叠?



