Course Schedule I&II

本文解析了课程安排问题的两种高效算法实现:一种是基于深度优先搜索(DFS)的方法来检测图中是否存在环;另一种是使用广度优先搜索(BFS)进行拓扑排序。通过这两种方法可以有效解决课程先修顺序问题。

Course Schedule

这题的本质就是,给你一个代表 graph 的 adjacency array,判断 graph 是否有环。其实和 Graph Valid Tree 非常像。
DFS 找环性能优异,DFS找环相当于在DFS的基础上(1)需要传一个visited数组,每次访问某个点的时候判断该点的visit数值,如果为0表示没有被访问过,1表示有环,2表示访问完成。再次访问1肯定有环。
(2)每次传一个cur参数,表明你现在正在遍历哪个点。
(2)加上一个boolean返回值的helper函数,当遇见环的时候直接返回。
(3)找环属于preorder。
public class Solution {
    public boolean canFinish(int numCourses, int[][] prerequisites) {
        ArrayList[] graph = new ArrayList[numCourses];
        int[] visited = new int[numCourses];


        for(int i = 0; i < numCourses; i++){
            graph[i] = new ArrayList<Integer>();
        }


        for(int[] num : prerequisites){
            int parent = num[1];
            int child = num[0];
            graph[parent].add(child);
        }


        for(int i = 0; i < numCourses; i++){
            if(visited[i] == 0 && hasCycle(i, visited, graph)) return false;
        }


        return true;
    }


    private boolean hasCycle(int cur, int[] visited, ArrayList[] graph){
        visited[cur] = 1;


        boolean hasCycle = false;


        for(int i = 0; i < graph[cur].size(); i++){
            int next = (int) graph[cur].get(i);
            if(visited[next] == 1) return true;
            else if(visited[next] == 0){
                hasCycle = hasCycle || hasCycle(next, visited, graph);
            }
        }


        visited[cur] = 2;


        return hasCycle;
    }
}

BFS 写法,速度超过 82.34%

思路上承接了原来的 topological sort BFS 解法
(1) 建 array 保存所有节点的 indegree
(2) 用ArrayList[]存储graph
在 BFS 时只有 indegree = 0 时才会被加入队列,如果 graph 中有环,会出现有环的部分永远无法进入 BFS 被访问的情况,因此在结尾我们只需要看一下到底有没有点从来没被访问过即可(设置一个counter,看counter ?= number of nodes

Course Schedule II

超过 80.69%,速度尚可~

思路和上一题完全一样,只不过留了个 index 用于记录拓扑顺序。

内容概要:本文介绍了ENVI Deep Learning V1.0的操作教程,重点讲解了如何利用ENVI软件进行深度学习模型的训练与应用,以实现遥感图像中特定目标(如集装箱)的自动提取。教程涵盖了从数据准备、标签图像创建、模型初始化与训练,到执行分类及结果优化的完整流程,并介绍了精度评价与通过ENVI Modeler实现一键化建模的方法。系统基于TensorFlow框架,采用ENVINet5(U-Net变体)架构,支持通过点、线、面ROI或分类图生成标签数据,适用于多/高光谱影像的单一类别特征提取。; 适合人群:具备遥感图像处理基础,熟悉ENVI软件操作,从事地理信息、测绘、环境监测等相关领域的技术人员或研究人员,尤其是希望将深度学习技术应用于遥感目标识别的初学者与实践者。; 使用场景及目标:①在遥感影像中自动识别和提取特定地物目标(如车辆、建筑、道路、集装箱等);②掌握ENVI环境下深度学习模型的训练流程与关键参数设置(如Patch Size、Epochs、Class Weight等);③通过模型调优与结果反馈提升分类精度,实现高效自动化信息提取。; 阅读建议:建议结合实际遥感项目边学边练,重点关注标签数据制作、模型参数配置与结果后处理环节,充分利用ENVI Modeler进行自动化建模与参数优化,同时注意软硬件环境(特别是NVIDIA GPU)的配置要求以保障训练效率。
内容概要:本文系统阐述了企业新闻发稿在生成式引擎优化(GEO)时代下的全渠道策略与效果评估体系,涵盖当前企业传播面临的预算、资源、内容与效果评估四大挑战,并深入分析2025年新闻发稿行业五大趋势,包括AI驱动的智能化转型、精准化传播、首发内容价值提升、内容资产化及数据可视化。文章重点解析央媒、地方官媒、综合门户和自媒体四类媒体资源的特性、传播优势与发稿策略,提出基于内容适配性、时间节奏、话题设计的策略制定方法,并构建涵盖品牌价值、销售转化与GEO优化的多维评估框架。此外,结合“传声港”工具实操指南,提供AI智能投放、效果监测、自媒体管理与舆情应对的全流程解决方案,并针对科技、消费、B2B、区域品牌四大行业推出定制化发稿方案。; 适合人群:企业市场/公关负责人、品牌传播管理者、数字营销从业者及中小企业决策者,具备一定媒体传播经验并希望提升发稿效率与ROI的专业人士。; 使用场景及目标:①制定科学的新闻发稿策略,实现从“流量思维”向“价值思维”转型;②构建央媒定调、门户扩散、自媒体互动的立体化传播矩阵;③利用AI工具实现精准投放与GEO优化,提升品牌在AI搜索中的权威性与可见性;④通过数据驱动评估体系量化品牌影响力与销售转化效果。; 阅读建议:建议结合文中提供的实操清单、案例分析与工具指南进行系统学习,重点关注媒体适配性策略与GEO评估指标,在实际发稿中分阶段试点“AI+全渠道”组合策略,并定期复盘优化,以实现品牌传播的长期复利效应。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值