Course Schedule I&II

本文解析了课程安排问题的两种高效算法实现:一种是基于深度优先搜索(DFS)的方法来检测图中是否存在环;另一种是使用广度优先搜索(BFS)进行拓扑排序。通过这两种方法可以有效解决课程先修顺序问题。

Course Schedule

这题的本质就是,给你一个代表 graph 的 adjacency array,判断 graph 是否有环。其实和 Graph Valid Tree 非常像。
DFS 找环性能优异,DFS找环相当于在DFS的基础上(1)需要传一个visited数组,每次访问某个点的时候判断该点的visit数值,如果为0表示没有被访问过,1表示有环,2表示访问完成。再次访问1肯定有环。
(2)每次传一个cur参数,表明你现在正在遍历哪个点。
(2)加上一个boolean返回值的helper函数,当遇见环的时候直接返回。
(3)找环属于preorder。
public class Solution {
    public boolean canFinish(int numCourses, int[][] prerequisites) {
        ArrayList[] graph = new ArrayList[numCourses];
        int[] visited = new int[numCourses];


        for(int i = 0; i < numCourses; i++){
            graph[i] = new ArrayList<Integer>();
        }


        for(int[] num : prerequisites){
            int parent = num[1];
            int child = num[0];
            graph[parent].add(child);
        }


        for(int i = 0; i < numCourses; i++){
            if(visited[i] == 0 && hasCycle(i, visited, graph)) return false;
        }


        return true;
    }


    private boolean hasCycle(int cur, int[] visited, ArrayList[] graph){
        visited[cur] = 1;


        boolean hasCycle = false;


        for(int i = 0; i < graph[cur].size(); i++){
            int next = (int) graph[cur].get(i);
            if(visited[next] == 1) return true;
            else if(visited[next] == 0){
                hasCycle = hasCycle || hasCycle(next, visited, graph);
            }
        }


        visited[cur] = 2;


        return hasCycle;
    }
}

BFS 写法,速度超过 82.34%

思路上承接了原来的 topological sort BFS 解法
(1) 建 array 保存所有节点的 indegree
(2) 用ArrayList[]存储graph
在 BFS 时只有 indegree = 0 时才会被加入队列,如果 graph 中有环,会出现有环的部分永远无法进入 BFS 被访问的情况,因此在结尾我们只需要看一下到底有没有点从来没被访问过即可(设置一个counter,看counter ?= number of nodes

Course Schedule II

超过 80.69%,速度尚可~

思路和上一题完全一样,只不过留了个 index 用于记录拓扑顺序。

内容概要:本文为《科技类企业品牌传播白皮书》,系统阐述了新闻媒体发稿、自媒体博主种草与短视频矩阵覆盖三大核心传播策略,并结合“传声港”平台的AI工具与资源整合能力,提出适配科技企业的品牌传播解决方案。文章深入分析科技企业传播的特殊性,包括受众圈层化、技术复杂性与传播通俗性的矛盾、产品生命周期影响及2024-2025年传播新趋势,强调从“技术输出”向“价值引领”的战略升级。针对三种传播方式,分别从适用场景、操作流程、效果评估、成本效益、风险防控等方面提供详尽指南,并通过平台AI能力实现资源智能匹配、内容精准投放与全链路效果追踪,最终构建“信任—种草—曝光”三位一体的传播闭环。; 适合人群:科技类企业品牌与市场负责人、公关传播从业者、数字营销管理者及初创科技公司创始人;具备一定品牌传播基础,关注效果可量化与AI工具赋能的专业人士。; 使用场景及目标:①制定科技产品全生命周期的品牌传播策略;②优化媒体发稿、KOL合作与短视频运营的资源配置与ROI;③借助AI平台实现传播内容的精准触达、效果监测与风险控制;④提升品牌在技术可信度、用户信任与市场影响力方面的综合竞争力。; 阅读建议:建议结合传声港平台的实际工具模块(如AI选媒、达人匹配、数据驾驶舱)进行对照阅读,重点关注各阶段的标准化流程与数据指标基准,将理论策略与平台实操深度融合,推动品牌传播从经验驱动转向数据与工具双驱动。
【3D应力敏感度分析拓扑优化】【基于p-范数全局应力衡量的3D敏感度分析】基于伴随方法的有限元分析和p-范数应力敏感度分析(Matlab代码实现)内容概要:本文档围绕“基于p-范数全局应力衡量的3D应力敏感度分析”展开,介绍了一种结合伴随方法与有限元分析的拓扑优化技术,重点实现了3D结构在应力约束下的敏感度分析。文中详细阐述了p-范数应力聚合方法的理论基础及其在避免局部应力过高的优势,并通过Matlab代码实现完整的数值仿真流程,涵盖有限元建模、灵敏度计算、优化迭代等关键环节,适用于复杂三维结构的轻量化与高强度设计。; 适合人群:具备有限元分析基础、拓扑优化背景及Matlab编程能力的研究生、科研人员或从事结构设计的工程技术人员,尤其适合致力于力学仿真与优化算法开发的专业人士; 使用场景及目标:①应用于航空航天、机械制造、土木工程等领域中对结构强度和重量有高要求的设计优化;②帮助读者深入理解伴随法在应力约束优化中的应用,掌握p-范数法处理全局应力约束的技术细节;③为科研复现、论文写作及工程项目提供可运行的Matlab代码参考与算法验证平台; 阅读建议:建议读者结合文中提到的优化算法原理与Matlab代码同步调试,重点关注敏感度推导与有限元实现的衔接部分,同时推荐使用提供的网盘资源获取完整代码与测试案例,以提升学习效率与实践效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值