Leetcode 72. Edit Distance

本文介绍了一种算法,用于计算将一个字符串(word1)转换为另一个字符串(word2)所需的最少操作数(插入、删除、替换字符)。通过动态规划方法,维护一个二维数组dp[i][j]来记录从word1的前i个字符转换到word2的前j个字符所需的最少步骤。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Given two words word1 and word2, find the minimum number of steps required to convert word1 to word2. (each operation is counted as 1 step.)

You have the following 3 operations permitted on a word:

a) Insert a character
b) Delete a character
c) Replace a character

题目大意是: 有两个 字符串, 找到把word1 转化成 word2 最少的操作步骤。

维护一个二维数组 dp[ i ][ j ] , dp[ i ][ j ] 表示 把 word1 [0 .. i - 1]   转换到 word1 [0 .. j - 1] 所需的最小步骤。

例子: word1: abcd   word2: qwer

dp[ 4 ][ 0 ] 表示 把 abcd 转化成 “” 所需 步骤, 所以是 4.

所以

dp[ i ][ 0 ] = i

dp[ 0 ][ j ] = j

如果 word1[ i - 1] 等于 word2[ j - 1] ,dp[ i ][ j ] = dp[ i  - 1][ j - 1] ,则不需要做任何改动

If they are not equal, we need to consider three cases:

  1. Replace word1[i - 1] by word2[j - 1] (dp[i][j] = dp[i - 1][j - 1] + 1 (for replacement));
  2. Delete word1[i - 1] and word1[0..i - 2] = word2[0..j - 1] (dp[i][j] = dp[i - 1][j] + 1 (for deletion));
  3. Insert word2[j - 1] to word1[0..i - 1] and word1[0..i - 1] + word2[j - 1] = word2[0..j - 1] (dp[i][j] = dp[i][j - 1] + 1 (for insertion)).

替换:把word1[ i - 1]  替换成 word2[ j - 1] 则需要 把 在dp[ i  - 1][ j - 1]的基础上 加 1, 所以是  dp[ i ][ j ] = dp[ i  - 1][ j - 1] + 1

删除:把word1[ i - 1]  删除, 使得 word1[ i - 2] 和 word2[ j - 1]  一样, 需要把替换成 word2[ j - 1]  ,  dp[ i ][ j ] = dp[ i  - 1][ j ] + 1

加入:把word2[ j - 1] 加入到 word1中, dp[ i ][ j ] = dp[ i ][ j - 1] + 1




    public int minDistance(String word1, String word2) {
        int len1 = word1.length(), len2 = word2.length();        
        int[][] dp = new int[len1 + 1][len2 + 1];
        
        for (int i = 1; i <= len1; i++) {
            dp[i][0] = i;
        }
        for (int j = 1; j <= len2; j++) {
            dp[0][j] = j;
        }
        
        for (int i = 1; i <= len1; i++) {
            for (int j = 1; j <= len2; j++) {
                if (word1.charAt(i - 1) == word2.charAt(j - 1)) dp[i][j] = dp[i - 1][j - 1];
                else dp[i][j] = Math.min(dp[i][j - 1], Math.min(dp[i - 1][j - 1], dp[i - 1][j])) + 1;
            }
        }
        return dp[len1][len2];
    }








评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值