多项式与黑盒模拟prove
1.域:
有限域: F P = Z P = { 0 , 1 , . . . , p − 1 } F_P=Z_P=\lbrace 0,1,...,p-1\rbrace FP=ZP={ 0,1,...,p−1} ,p个元素,满足加减乘除运算。
有限域的乘法群: F p = Z p ∗ = { 1 , 2 , . . . , p − 1 } F_p = Z_p^* = \lbrace 1,2,...,p-1\rbrace Fp=Zp∗={ 1,2,...,p−1}, p-1个元素,满足乘除运算。
例如:
- p =2,3,5,7,
- 当p=2: F 2 = { 0 , 1 } F_2=\lbrace 0,1\rbrace F2={ 0,1},乘法群 F 2 ∗ = { 1 } F_2^*=\lbrace1\rbrace F2∗={ 1}.
- 当p=3: F 3 = { 0 , 1 , 2 } F_3=\lbrace 0,1,2\rbrace F3={ 0,1,2},乘法群 F 3 ∗ = { 1 , 2 } F_3^*=\lbrace 1,2\rbrace F3∗={ 1,2}. 因为 2 × 2 = 1 2×2=1 2×2=1
- 当p=5: F 5 = { 0 , 1 , 2 , 3 , 4 } F_5=\lbrace 0,1,2,3,4\rbrace F5={ 0,1,2,3,4},乘法群 F 5 ∗ = { 1 , 2 , 3 , 4 } F_5^*=\lbrace 1,2,3,4\rbrace F5∗={ 1,2,3,4}. 2是生成元, { 1 , 2 , 2 2 = 4 , 2 3 = 3 } \lbrace 1,2,2^2=4,2^3=3\rbrace { 1,2,22=4,23=3}是一个循环群
- 当p=7: F 7 = { 0 , 1 , 2 , 3 , 4 , 5 , 6 } F_7=\lbrace 0,1,2,3,4,5,6\rbrace F7={ 0,1,2,3,4,5,6},乘法群 F 7 ∗ = { 1 , 2 , 3 , 4 , 5 , 6 } F_7^*=\lbrace 1,2,3,4,5,6\rbrace F7∗={ 1,2,3,4,5,6}. 3是生成元, { 1 , 3 , 3 2 = 2 , 3