前言
前文《天冷了,干了这碗“零知识证明”鸡汤》对「零知识证明学习」作了一个形象化的比喻:炖鸡汤。那么本系列的主要内容可以简单概括为《论高压锅炖鸡汤的一百种方法》之方法二。在学会了“清炖鸡汤”之后,不如来一口“阿胶鸡汤”补补脑细胞吧!
正如鸡汤不同风味之间各具千秋,不同的zk-SNARK方案也各有所长。zk-SNARK方案可以被分为【通用】与【非通用】zk-SNARK,PLONK与Groth16分别是其中的典型代表。通过本系列,我们将对PLONK算法内容作简要介绍,并指出PLONK和Groth16算法思路上的异同。
PLONK算法在[1]中提出,由来自于Protocol Labs的研究员Gabizon和以太坊隐私交易协议 Aztec Protocol 的两名研究人员合作完成。PLONK的提出晚于Groth16,在证明和验证的性能上与Groth16也存在一定差距,但是基于通用可更新的可信设置这一特点,使PLONK算法在零知识证明领域占据了一席之地。
可信设置
可信设置可以说是PLONK和Groth16两者间最显著的差异。正是为了避免一次性的可信设置,PLONK设计了后续的约束系统和问题压缩方式。那么什么是零知识证明中的可信设置呢?可信设置实际上是在创建一个用于证明验证的秘密,任何知道这个秘密的人都可以伪造证明通过验证。如果将零知识证明看作是一扇挡在证明者a和验证者b之间上锁的门,那么合法构建的证明就是可以打开门的口令,a提供口令即可进入房间。但是如果a得知了门的秘密也就是房间窗户的位置,那么a可以直接无视锁的存在翻窗进入房间。