QNLI:用于判断文本是否包含问题的答案,类似于我们做阅读理解定位问题所在的段落。
(d)命名实体识别
- CoNLL-2003 NER:判断一个句子中的单词是不是Person,Organization,Location,Miscellaneous或者other(无命名实体)。微调CoNLL-2003 NER时将整个句子作为输入,在每个时间片输出一个概率,并通过softmax得到这个Token的实体类别。
-
(c)问答任务
- SQuAD v1.1:给定一个句子(通常是一个问题)和一段描述文本,输出这个问题的答案,类似于做阅读理解的简答题。如图5.(c)表示的,SQuAD的输入是问题和描述文本的句子对。输出是特征向量,通过在描述文本上接一层激活函数为softmax的全连接来获得输出文本的条件概率,全连接的输出节点个数是语料中Token的个数。