#代码1部分
epochs = 3
print_every = 40
steps = 0
for e in range(epochs):
running_loss = 0
for images, labels in iter(trainloader):
steps += 1
# Flatten MNIST images into a 784 long vector
print("images.size()[0]=",images.size()[0])
images.resize_(images.size()[0], 784)
optimizer.zero_grad()
# Forward and backward passes
output = model.forward(images)
print("output.size()=",output.size())
loss = criterion(output, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
if steps % print_every == 0:
print("Epoch: {}/{}... ".format(e+1, epochs),
"Loss: {:.4f}".format(running_loss/print_every))
running_loss = 0
#result
output.size()= torch.Size([64, 10]) images.size()[0]= 64 output.size()= torch.Size([64, 10]) images.size()[0]= 64 output.size()= torch.Size([64, 10]) images.size()[0]= 64 output.size()= torch.Size([64, 10]) images.size()[0]= 64 output.size()= torch.Size([64, 10]) images.size()[0]= 64 output.size()= torch.Size([64, 10]) images.size()[0]= 32 output.size()= torch.Size([32, 10])