对tf.reduce_mean API的理解就是求平均值,reduce指的是一串数据求平均值后维数降低了,可不是吗,一串向量变成了一个数,维数自然降低了

本文详细解析了TensorFlow中的tf.reduce_mean函数,解释了如何通过该函数对输入张量进行平均值计算,包括参数说明、使用场景及示例代码。了解tf.reduce_mean在不同维度上的操作方式,掌握其在神经网络训练、自定义层和模型等领域的应用。
tf.math.reduce_mean(
    input_tensor, axis=None, keepdims=False, name=None
)

 

对tf.reduce_mean的理解就是求平均值,reduce指的是一串数据求平均值后维数降低了,可不是吗,一串向量变成了一个数,维数自然降低了

API URL

https://tensorflow.google.cn/api_docs/python/tf/math/reduce_mean?hl=en

 

 

Used in the notebooks

tf.math.reduce_mean(
    input_tensor, axis=None, keepdims=False, name=None
)

 

Used in the notebooks

Used in the guideUsed in the tutorials

Reduces input_tensor along the dimensions given in axis. Unless keepdims is true, the rank of the tensor is reduced by 1 for each entry in axis. If keepdims is true, the reduced dimensions are retained with length 1.

If axis is None, all dimensions are reduced, and a tensor with a single element is returned.

For example:

x = tf.constant([[1., 1.], [2., 2.]])
tf.reduce_mean(x)  # 1.5
tf.reduce_mean(x, 0)  # [1.5, 1.5]
tf.reduce_mean(x, 1)  # [1.,  2.]

 

Args:

  • input_tensor: The tensor to reduce. Should have numeric type.
  • axis: The dimensions to reduce. If None (the default), reduces all dimensions. Must be in the range [-rank(input_tensor), rank(input_tensor)).
  • keepdims: If true, retains reduced dimensions with length 1.
  • name: A name for the operation (optional).

Returns:

The reduced tensor.

Numpy Compatibility

Equivalent to np.mean

Please note that np.mean has a dtype parameter that could be used to specify the output type. By default this is dtype=float64. On the other hand, tf.reduce_mean has an aggressive type inference from input_tensor, for example:

x = tf.constant([1, 0, 1, 0])
tf.reduce_mean(x)  # 0
y = tf.constant([1., 0., 1., 0.])
tf.reduce_mean(y)  # 0.5
 
  

Reduces input_tensor along the dimensions given in axis

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值