tf.reduce_mean

本文详细介绍了TensorFlow中reduce_mean函数的功能及用法,包括如何计算张量各维度的平均值,以及函数参数说明。通过实例展示了不同参数设置下reduce_mean的计算结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

reduce_mean(
    input_tensor,
    axis=None,
    keepdims=None,
    name=None,
    reduction_indices=None,
    keep_dims=None
)

Defined in tensorflow/python/ops/math_ops.py.

See the guide: Math > Reduction

Computes the mean of elements across dimensions of a tensor. (deprecated arguments)

SOME ARGUMENTS ARE DEPRECATED. They will be removed in a future version.Instructions for updating:keep_dims is deprecated, use keepdims instead

Reduces input_tensor along the dimensions given in axis.Unless keepdims is true, the rank of the tensor is reduced by 1 for eachentry in axis. If keepdims is true, the reduced dimensionsare retained with length 1.

If axis has no entries, all dimensions are reduced, and atensor with a single element is returned.

For example:

x = tf.constant([[1., 1.], [2., 2.]])
tf.reduce_mean(x)  # 1.5
tf.reduce_mean(x, 0)  # [1.5, 1.5]
tf.reduce_mean(x, 1)  # [1.,  2.]
Args:
  • input_tensor: The tensor to reduce. Should have numeric type.
  • axis: The dimensions to reduce. If None (the default), reduces all dimensions. Must be in the range [-rank(input_tensor), rank(input_tensor)).
  • keepdims: If true, retains reduced dimensions with length 1.
  • name: A name for the operation (optional).
  • reduction_indices: The old (deprecated) name for axis.
  • keep_dims: Deprecated alias for keepdims.
Returns:

The reduced tensor.

Numpy Compatibility

Equivalent to np.mean

Please note that np.mean has a dtype parameter that could be used tospecify the output type. By default this is dtype=float64. On the otherhand, tf.reduce_mean has an aggressive type inference from input_tensor,for example:

x = tf.constant([1, 0, 1, 0])
tf.reduce_mean(x)  # 0
y = tf.constant([1., 0., 1., 0.])
tf.reduce_mean(y)  # 0.5
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值