一、知识蒸馏的来源
知识蒸馏(Knowledge Distillation)源自于一篇由Hinton等人于2015年提出的论文《Distilling the Knowledge in a Neural Network》。这个方法旨在将一个大型、复杂的模型的知识(通常称为教师模型)转移到一个小型、简化的模型(通常称为学生模型)中。通过这种方式,学生模型可以获得与教师模型相似的性能,同时具有更小的模型体积和计算资源需求。
二、知识蒸馏的原理
知识蒸馏的核心思想是利用教师模型的输出作为附加的监督信号来训练学生模型。在传统的监督学习中,目标是最小化模型预测与真实标签之间的差距(损失函数)。而在知识蒸馏中,除了最小化模型预测与真实标签之间的差距外,还引入了一个额外的损失项,该项衡量了学生模型预测与教师模型预测之间的距离。
具体而言,损失函数通常由两部分组成:一部分是传统的交叉熵损失,用于衡量学生模型的预测与真实标签之间的差距;另一部分是知识蒸馏损失,用于衡量学生模型的预测与教师模型的预测之间的差距。知识蒸馏损失通常使用一些形式的距离度量来计算,例如平方误差损失或者交叉熵损失。
在蒸馏求loss时候,需要采用蒸馏函数,这个函数就是把softmax函数在计算时候,预测出来的结果Z进行除以温度T,进行求解后验概率。下面是修改后的softmax函数,也就是蒸馏函数。


本文介绍了知识蒸馏的概念,源于Hinton等人的论文,通过将大型模型的知识传授给小型模型,以提高性能、压缩模型并加速计算。文章详细阐述了原理,包括利用教师模型的输出作为监督信号,以及在模型压缩和迁移学习中的应用。最后预告了后续的代码实战内容。
最低0.47元/天 解锁文章
1738






