84、色彩相关知识科普:从照明到染料

色彩科学:照明与染料原理

色彩相关知识科普:从照明到染料

一、漫射照明

1.1 定义

漫射照明是指在被照亮空间中的一个点、平面或物体上,来自各个方向的光具有相同的发光强度。

1.2 照明来源

  • 日光照明 :太阳是日光的主要来源。当天空中有云时,部分阳光被吸收,部分被反射,形成直射阳光和云层反射的二次光的组合。当天空完全被云层覆盖时,阴天的天空就像一个完美的漫射器,产生完全的漫射日光。CIE引入了具有定义亮度分布的CIE阴天天空,其亮度在天顶最高,在地平线处降至三分之一。为了简化计算,有时也会使用亮度分布均匀的CIE均匀天空。
  • 电照明 :室内间接照明可实现近乎完全的漫射电照明,将电灯射向天花板,使天花板亮度接近均匀,光线经天花板反射后到达工作平面,但白色天花板反射率通常不超过70%,至少30%的光会被吸收。一些室内会使用带有乳白百叶窗的大型灯具创造人造天空,其照明通常是漫射的,但使用LED或OLED解决方案时,可能会产生不均匀的天空和非漫射照明。传统室内照明灯具一般有漫射成分,在60 - 70°仰角下还有定向成分,具体照明效果取决于灯具的实际光分布。

1.3 漫射照明的后果

完全漫射照明的效果可以通过阴天的天空来解释,它会给人单调、沉闷的感觉,阴影、深度、形状和纹理不明显或完全缺失,对视觉愉悦感和视觉性能都有负面影响。例如,在阴天的滑雪场上,由于没有阴影,很难看到雪地上的不平整和凸起,这种情况下进行有难度的下滑是很危险的。漫射电照明也有类似的负面影响,缺乏阴影的效果常被称为“建模不佳”。好的室内照明应同时包含漫射

【EI复现】基于深度强化学习的微能源网能量管理与优化策略研究(Python代码实现)内容概要:本文围绕“基于深度强化学习的微能源网能量管理与优化策略”展开研究,重点利用深度Q网络(DQN)等深度强化学习算法对微能源网中的能量调度进行建模与优化,旨在应对可再生能源出力波动、负荷变化及运行成本等问题。文中结合Python代码实现,构建了包含光伏、储能、负荷等元素的微能源网模型,通过强化学习智能体动态决策能量分配策略,实现经济性、稳定性和能效的多重优化目标,并可能与其他优化算法进行对比分析以验证有效性。研究属于电力系统与人工智能交叉领域,具有较强的工程应用背景和学术参考价值。; 适合人群:具备一定Python编程基础和机器学习基础知识,从事电力系统、能源互联网、智能优化等相关方向的研究生、科研人员及工程技术人员。; 使用场景及目标:①学习如何将深度强化学习应用于微能源网的能量管理;②掌握DQN等算法在实际能源系统调度中的建模与实现方法;③为相关课题研究或项目开发提供代码参考和技术思路。; 阅读建议:建议读者结合提供的Python代码进行实践操作,理解环境建模、状态空间、动作空间及奖励函数的设计逻辑,同时可扩展学习其他强化学习算法在能源系统中的应用。
皮肤烧伤识别作为医学与智能技术交叉的前沿课题,近年来在深度学习方法推动下取得了显著进展。该技术体系借助卷积神经网络等先进模型,实现了对烧伤区域特征的高效提取与分类判别,为临床诊疗决策提供了重要参考依据。本研究项目系统整合了算法设计、数据处理及模型部署等关键环节,形成了一套完整的可操作性方案。 在技术实现层面,首先需要构建具有代表性的烧伤图像数据库,涵盖不同损伤程度及愈合阶段的临床样本。通过对原始图像进行标准化校正、对比度增强等预处理操作,有效提升后续特征学习的稳定性。网络架构设计需充分考虑皮肤病变的区域特性,通过多层卷积与池化操作的组合,逐步抽象出具有判别力的烧伤特征表示。 模型优化过程中采用自适应学习率调整策略,结合交叉熵损失函数与梯度下降算法,确保参数收敛的稳定性。为防止过拟合现象,引入数据扩增技术与正则化约束,增强模型的泛化能力。性能验证阶段采用精确率、召回率等多维度指标,在独立测试集上全面评估模型对不同烧伤类型的识别效能。 经过充分验证的识别系统可集成至医疗诊断平台,通过规范化接口实现与现有医疗设备的无缝对接。实际部署前需进行多中心临床验证,确保系统在不同操作环境下的稳定表现。该技术方案的实施将显著缩短烧伤评估时间,为临床医师提供客观量化的辅助诊断依据,进而优化治疗方案制定流程。 本项目的突出特点在于将理论研究与工程实践有机结合,既包含前沿的深度学习算法探索,又提供了完整的产业化实施路径。通过模块化的设计思路,使得医疗专业人员能够快速掌握核心技术方法,推动智能诊断技术在烧伤外科领域的实际应用。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值