学习笔记(9)——命名实体识别(NER)

1 概述

1 命名实体

文本中有一些描述实体的词汇。比如人名、地名、组织机构名、股票基金、医学术语等,称为命名实体。具有以下共性:

  • 数量无穷。比如宇宙中的恒星命名、新生儿的命名不断出现新组合。
  • 构词灵活。比如中国工商银行,既可以称为工商银行,也可以简称工行。
  • 类别模糊。有一些地名本身就是机构名,比如“国家博物馆”。

2 命名实体识别

识别出句子中命名实体的边界与类别的任务称为命名实体识别。由于上述难点,命名实体识别也是一个统计为主、规则为辅的任务。

对于规则性较强的命名实体,比如网址、E-mail、IBSN、商品编号等,完全可以通过正则表达式处理,未匹配上的片段交给统计模型处理。

命名实体识别也可以转化为一个序列标注问题。具体做法是将命名实体识别附着到{B,M,E,S}标签,比如, 构成地名的单词标注为“B/ME/S- 地名”,以此类推。对于那些命名实体边界之外的单词,则统一标注为0 ( Outside )。具体实施时,HanLP做了一个简化,即所有非复合词的命名实体都标注为S,不再附着类别。这样标注集更精简,模型更小巧。

命名实体识别实际上可以看作分词与词性标注任务的集成: 命名实体的边界可以通过{B,M,E,S}确定,其类别可以通过 B-nt 等附加类别的标签来确定。

HanLP内部提供了语料库转换工序,用户无需关心,只需要传入 PKU 格式的语料库路径即可。

2 基于隐马尔可夫模型序列标注的命名实体识别

隐马尔可夫模型的详细介绍见: 学习笔记(4)——序列标注与隐马尔可夫

评论 1
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值