29、多模态医学图像与对称二分图中的相关问题研究

多模态医学图像与对称二分图中的相关问题研究

在当今的科研领域,多模态医学图像压缩以及图论中的中位数问题都有着重要的研究价值。多模态医学图像压缩有助于更高效地存储和传输医学影像数据,而对称二分图的中位数问题则在网络理论等方面有着广泛的应用。下面将详细探讨这两个方面的研究内容。

多模态医学图像压缩方法比较

在医学图像压缩的研究中,采用了三种不同的方法,分别是分形(Fractal)、径向基函数神经网络(Radial Basis Function Neural Network)以及混合分形与径向基函数神经网络(Hybrid Fractal & NNRBF),并对它们的压缩效果进行了比较。
- 评估参数 :选用了磁共振(MR)和计算机断层扫描(CT)图像,以压缩比(Compression Ratio,CR)、峰值信噪比(Peak Signal to Noise Ratio,PSNR)、执行时间和内存使用量作为质量评估参数。
- 结果分析 :研究发现,混合方法具有较低的压缩比和较高的峰值信噪比,这表明它在保留图像质量的同时,能实现相对较好的压缩效果,比分形和径向基函数神经网络方法更高效。

下面通过表格展示这三种方法在不同参数上的表现,以便更直观地比较:
| 方法 | 压缩比(CR) | 峰值信噪比(PSNR) | 执行时间 | 内存使用量 |
| ---- | ---- | ---- | ---- | ---- |
| 分形(Fractal) | 高 | 低 | - | - |
| 径向基函数神经网络(NNRBF) | - | - | - | - |

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值