一.朴素贝叶斯原理及文本分类
原理:https://blog.youkuaiyun.com/c369624808/article/details/78794741
代码部分:
1.先做一个数据集
from numpy import *
def loadDataSet():
postingList=[['my', 'dog', 'has', 'flea', 'problems', 'help', 'please'],
['maybe', 'not', 'take', 'him', 'to', 'dog', 'park', 'stupid'],
['my', 'dalmation', 'is', 'so', 'cute', 'I', 'love', 'him'],
['stop', 'posting', 'stupid', 'worthless', 'garbage'],
['mr', 'licks', 'ate', 'my', 'steak', 'how', 'to', 'stop', 'him'],
['quit', 'buying', 'worthless', 'dog', 'food', 'stupid']]
classVec = [0,1,0,1,0,1] #1 is abusive, 0 not
return postingList,classVecdef createVocabList(dataSet):
2.创建词汇表
def createVocabList(dataSet):
vocabSet = set([]) #create empty set
for document in dataSet:
vocabSet = vocabSet | set(document) #union of the two sets
return list(vocabSet)
3.词向量
def setofwords2vec(vocablist,inputset):
returnvec=[0]*len(vocabilst)
for word in inputset:
if word in vocablist:
returnvec[vocablist.index(word)]=1
return returnvec
4.按照贝叶斯原理写个训练函数
def trainNB0(trainMatrix,trainCategory):
numTrainDocs = len(trainMatrix)
numWords = len(trainMatrix[0])
pAbusive = sum(trainCategory)/float(numTrainDocs)
p0Num = ones(numWords); p1Num = ones(numWords) #change to ones()
p0Denom = 2.0; p1Denom = 2.0 #change to 2.0
for i in range(numTrainDocs):
if trainCategory[i] == 1:
p1Num += trainMatrix[i]
p1Denom += sum(trainMatrix[i])
else:
p0Num += trainMatrix[i]
p0Denom += sum(trainMatrix[i])
p1Vect = log(p1Num/p1Denom) #change to log()
p0Vect = log(p0Num/p0Denom) #change to log()
return p0Vect,p1Vect,pAbusive
5.分类
def classifyNB(vec2Classify, p0Vec, p1Vec, pClass1):
p1 = sum(vec2Classify * p1Vec) + log(pClass1) #element-wise mult
p0 = sum(vec2Classify * p0Vec) + log(1.0 - pClass1)
if p1 > p0:
return 1
else:
return 0
二.SVM原理及文本分类
原理:https://blog.youkuaiyun.com/weixin_39605679/article/details/81170300
代码部分:
1.调用数据集
import numpy as np
import sklearn
from sklearn.datasets import fetch_20newsgroups
twenty_train=fetch_20newsgroups(subset='train',shuffle=True)
twenty_train.traget_names
2.词袋模型
from sklearn.feature_extraction.text import CountVectorizer
count_vect=CountVectorizer()
x_train_counts=count_vect.fit_transform(twenty_train.data)#词袋模型
3.训练及给出答案
from sklearn.naive_bayes import MultinomialNB
clf=MultionmialNB.fit(x_train_counts,twenty_train.target)
twenty_test=fetch_20newsgroups(subset='test',shuffle=True)#生成测试集
x_test_counts=count_vect.transform(twenty_test.data)
predicted=clf.predict(x_test_counts)
np.mean(predicted==twenty_test.target)
三.LDA原理及代码实现
原理:https://blog.youkuaiyun.com/Kaiyuan_sjtu/article/details/83572927
代码:
1.读取和处理数据
from gensim.test.utils import common_texts
from gensim.corpora.dictionary import Dictionary
# Create a corpus from a list of texts
common_dictionary = Dictionary(common_texts)
common_corpus = [common_dictionary.doc2bow(text) for text in common_texts]
# Train the model on the corpus.
lda = LdaModel(common_corpus, num_topics=10)
2.将文本转化为词袋模型
from gensim.corpora import Dictionary
dct = Dictionary(["máma mele maso".split(), "ema má máma".split()])
dct.doc2bow(["this", "is", "máma"])
[(2, 1)]
dct.doc2bow(["this", "is", "máma"], return_missing=True)
([(2, 1)], {u'this': 1, u'is': 1})
3.运用lda模型
from gensim.models import LdaModel
lda = LdaModel(common_corpus, num_topics=10)
lda.print_topic(1, topn=2)
'0.500*"9" + 0.045*"10"