取2维特征,方便图形展示
import matplotlib.pyplot as plt from sklearn.decomposition import PCA from sklearn.datasets import load_iris data = load_iris() y = data.target X = data.data pca = PCA(n_components=2) reduced_X = pca.fit_transform(X) red_x, red_y = [], [] blue_x, blue_y = [], [] green_x, green_y = [], [] for i in range(len(reduced_X)): if y[i] == 0: red_x.append(reduced_X[i][0]) red_y.append(reduced_X[i][1]) elif y[i] == 1: blue_x.append(reduced_X[i][0]) blue_y.append(reduced_X[i][1]) else: green_x.append(reduced_X[i][0]) green_y.append(reduced_X[i][1]) plt.scatter(red_x, red_y, c='r', marker='x') plt.scatter(blue_x, blue_y, c='b', marker='D') plt.scatter(green_x, green_y, c='g', marker='.') plt.show()

PCA降维与Iris数据集可视化
本文通过使用主成分分析(PCA)算法将Iris数据集的维度降至二维,便于进行图形化展示。通过对不同种类的鸢尾花数据进行颜色编码并用不同标记绘制,实现了对数据集中三种鸢尾花类型的清晰区分与可视化。
4760

被折叠的 条评论
为什么被折叠?



