tensorflow的预训练模型网址为:https://hub.tensorflow.google.cn
已经下载好的预训练模型:bert_zh_L-12_H-768_A-12的v4版本(链接:https://pan.baidu.com/s/1Ld_mvXf8Es4lwCaW1PgKsQ
提取码:3xba)和bert_zh_preprocess的v3版本(链接:https://pan.baidu.com/s/1jseOQKlVj88-Hpak2PXsCw
提取码:s9eq)
模型离线加载:
import tensorflow_hub as hub
# A dependency of the preprocessing for BERT inputs
#模型预处理时内部使用到了对应的模块,所以必须导入
import tensorflow_text as text
preprocessor = hub.KerasLayer(
"data/bert_preprocess_module/3")
encoder = hub.KerasLayer(
"data/bert_zh_encoder_L-12_H-768_A-12/4",
trainable=False)
text_input = tf.keras.layers.Input(shape=(), dtype=tf.string)
# 模型线上地址:https://hub.tensorflow.google.cn/tensorflow/bert_zh_preprocess/3
#无参数,主要用来对输入的字符串文本进行分词处理
encoder_inputs = preprocessor(text_input)
# https://hub.tensorflow.google.cn/tensorflow/bert_zh_L-12_H-768_A-12/4
outputs = encoder(encoder_inputs)
pooled_output = outputs["pooled_output"] # [batch_size, 768].
sequence_output = outputs["sequence_output"] # [batch_size, seq_length, 768].
embedding_model = tf.keras.Model(text_input, pooled_output)
while True:
mysentence = input()
sentences = tf.constant([mysentence])
print(embedding_model(sentences))
基于预训练模型创建新模型:
import tensorflow as tf
import tensorflow_hub as hub
import tensorflow_text as text
class Mybert(tf.keras.models.Model):
def __init__(self):
super(Mybert, self).__init__()
self.preprocessor = hub.KerasLayer(
"data/bert_preprocess_module/3")
self.encoder = hub.KerasLayer(
"data/bert_zh_encoder_L-12_H-768_A-12/4",
trainable=False)
def call(self, inputs):
# ***************word token embedding begin***************
inputs = tf.convert_to_tensor(inputs)
encoder_inputs = self.preprocessor(inputs)
# https://hub.tensorflow.google.cn/tensorflow/bert_zh_L-12_H-768_A-12/4
outputs = self.encoder(encoder_inputs)
return outputs["pooled_output"]
if __name__ == '__main__':
mybert = Mybert()
while True:
mysentence = input()
sentences = tf.constant([mysentence])
print(mybert(sentences))