72、从贝叶斯视角看视觉感受野的上下文调制

从贝叶斯视角看视觉感受野的上下文调制

1. 模型概述

视觉系统如何处理复杂的视觉信息一直是研究的热点。有一种基于贝叶斯推理的模型为我们理解视觉感受野的上下文调制提供了新的视角。该模型旨在解决相似物体之间的歧义,实现冗余消除,将感觉处理视为时间和空间上的冗余减少形式。

2. 模型神经元与生物神经元的相似性

该模型预测的视觉神经元响应与视网膜、外侧膝状体(LGN)和视觉皮层中的生物神经元有许多共同特征:
- 神经元类型 :可描述为具有平衡的兴奋性和抑制性输入的积分 - 发放神经元(Shadlen & Newsome, 1994)。
- 输出特性 :产生异步、弱相关的泊松样输出尖峰序列(Vogels, Spileers, & Orban, 1989)。
- 响应特性 :对视觉刺激呈现出强烈的瞬态响应,其响应特性受侧向分割抑制的影响(Carandini et al., 1997)。
- 感受野结构 :感受野具有中心 - 周边结构(Bradley & Andersen, 1998; Bullier & Norton, 1779; Hartline, 1938)。
- 最佳响应 :对最显著的刺激(即周边未预测到的刺激)反应最佳(Nothdurft, Gallant, & Van Essen, 1999)。
- 可塑性 :其响应特性可由周边刺激和先前呈现的刺激重塑。在

基于蒙特卡洛法的规模化电动车有序充放电及负荷预测(Python&Matlab实现)内容概要:本文围绕“基于蒙特卡洛法的规模化电动车有序充放电及负荷预测”展开,结合Python和Matlab编程实现,重点研究大规模电动汽车在电网中的充放电行为建模与负荷预测方法。通过蒙特卡洛模拟技术,对电动车用户的出行规律、充电需求、接入时间与电量消耗等不确定性因素进行统计建模,进而实现有序充放电策略的优化设计与未来负荷曲线的精准预测。文中提供了完整的算法流程与代码实现,涵盖数据采样、概率分布拟合、充电负荷聚合、场景仿真及结果可视化等关键环节,有效支撑电网侧对电动车负荷的科学管理与调度决策。; 适合人群:具备一定电力系统基础知识和编程能力(Python/Matlab),从事新能源、智能电网、交通电气化等相关领域研究的研究生、科研人员及工程技术人员。; 使用场景及目标:①研究大规模电动车接入对配电网负荷特性的影响;②设计有序充电策略以平抑负荷波动;③实现基于概率模拟的短期或长期负荷预测;④为电网规划、储能配置与需求响应提供数据支持和技术方案。; 阅读建议:建议结合文中提供的代码实例,逐步运行并理解蒙特卡洛模拟的实现逻辑,重点关注输入参数的概率分布设定与多场景仿真的聚合方法,同时可扩展加入分时电价、用户行为偏好等实际约束条件以提升模型实用性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值