26、算子矩阵的可和性

算子矩阵的可和性

1. 引言

算子矩阵的可和性是泛函分析中的一个重要课题,尤其在研究序列空间和矩阵变换时显得尤为重要。本文将深入探讨算子矩阵的可和性,包括其定义、条件、应用以及与经典可和性方法的关系。我们将从基本概念出发,逐步深入到更复杂的理论和技术细节,帮助读者全面理解这一领域。

2. 算子矩阵的可和性定义

算子矩阵的可和性是指一个算子矩阵能够将一个序列空间中的序列变换为另一个序列空间中的序列,并且这种变换是收敛的。具体来说,设 ( A = (A_{nk}) ) 是一个无穷算子矩阵,( A_{nk} ) 是从巴拿赫空间 ( X ) 到巴拿赫空间 ( Y ) 的线性算子。如果对于每一个 ( x = (x_k) \in X ),级数 ( \sum_{k=1}^\infty A_{nk} x_k ) 在 ( Y ) 的范数中收敛,那么我们说 ( x ) 通过 ( A ) 可求和到 ( y ),并记作 ( x \rightarrow y(A) ) 或者 ( y = A-\text{lim} x )。

2.1 算子矩阵的求和域

算子矩阵 ( A ) 的求和域 ( \mathcal{A} ) 定义为所有可以通过 ( A ) 求和的序列 ( x ) 的集合。即:

[ \mathcal{A} = { x \in X : \sum_{k=1}^\infty A_{nk} x_k \text{ 在 } Y \text{ 中收敛} } ]

2.2 算子矩阵的求和方法

算子矩阵的求和方法是指通过算子矩阵将一个序列 ( x ) 求和到另一个序列 ( y ) 的具体方式。常见的求和方法包括阿贝尔

根据原作 https://pan.quark.cn/s/459657bcfd45 的源码改编 Classic-ML-Methods-Algo 引言 建立这个项目,是为了梳理总结传统机器学习(Machine Learning)方法(methods)或者算法(algo),各位同仁相互学习交流. 现在的深度学习本质上来自于传统的神经网络模型,很大程度上是传统机器学习的延续,同时也在不少时候需要结合传统方法来实现. 任何机器学习方法基本的流程结构都是通用的;使用的评价方法也基本通用;使用的一些数学知识也是通用的. 本文在梳理传统机器学习方法算法的同时也会顺便补充这些流程,数学上的知识以供参考. 机器学习 机器学习是人工智能(Artificial Intelligence)的一个分支,也是实现人工智能最重要的手段.区别于传统的基于规则(rule-based)的算法,机器学习可以从数据中获取知识,从而实现规定的任务[Ian Goodfellow and Yoshua Bengio and Aaron Courville的Deep Learning].这些知识可以分为四种: 总结(summarization) 预测(prediction) 估计(estimation) 假想验证(hypothesis testing) 机器学习主要关心的是预测[Varian在Big Data : New Tricks for Econometrics],预测的可以是连续的输出变量,分类,聚类或者物品之间的有趣关联. 机器学习分类 根据数据配置(setting,是否有标签,可以是连续的也可以是离散的)任务目标,我们可以将机器学习方法分为四种: 无监督(unsupervised) 训练数据没有给定...
本系统采用微信小程序作为前端交互界面,结合Spring Boot与Vue.js框架实现后端服务及管理后台的构建,形成一套完整的电子商务解决方案。该系统架构支持单一商户独立运营,亦兼容多商户入驻的平台模式,具备高度的灵活与扩展。 在技术实现上,后端以Java语言为核心,依托Spring Boot框架提供稳定的业务逻辑处理与数据接口服务;管理后台采用Vue.js进行开发,实现了直观高效的操作界面;前端微信小程序则为用户提供了便捷的移动端购物体验。整套系统各模块间紧密协作,功能链路完整闭环,已通过严格测试与优化,符合商业应用的标准要求。 系统设计注重业务场景的全面覆盖,不仅包含商品展示、交易流程、订单处理等核心电商功能,还集成了会员管理、营销工具、数据统计等辅助模块,能够满足不同规模商户的日常运营需求。其多店铺支持机制允许平台方对入驻商户进行统一管理,同时保障各店铺在品牌展示、商品销售及客户服务方面的独立运作空间。 该解决方案强调代码结构的规范与可维护,遵循企业级开发标准,确保了系统的长期稳定运行与后续功能迭代的可行。整体而言,这是一套技术选型成熟、架构清晰、功能完备且可直接投入商用的电商平台系统。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
### 原理 LOG算子是在经典算子的基础上发展起来的边缘检测算子,由于Laplacian算子对图像中的噪声非常敏感,因此LOG算子先采用Gaussian函数对图像进行平滑,再采用Laplacian算子根据二阶导数过零点来检测图像边缘[^1]。从本质上来说,为简化运算,将高斯滤波算子与Laplacian算子相结合,就得到了LoG算子,而当高斯滤波范围很窄(方差很小)时,高斯滤波不再产生影响,LoG算子退化为Laplacian算子[^3]。 ### 应用 - **边缘检测**:在图像处理领域,LOG算子被广泛用于提取图像的边缘。由于它先进行了高斯滤波,可以一定程度上克服噪声的影响,且该算法边界定位精度高,抗干扰能力强,连续好,因此在边缘检测方面有较好的效果。例如在MATLAB软件中,函数edge()可以采用LOG算子进行图像的边缘检测 [^1][^2]。 - **图像增强**:拉普拉斯算子是高通滤波器,能够增强图像中的快速强度变化,LOG算子结合了高斯平滑拉普拉斯边缘检测,也可用于增强图像的边缘特征,使图像中的物体轮廓更加清晰 [^1][^4]。 ### 计算方法 在实际应用中,可借助编程语言相关库函数进行计算。以MATLAB为例,使用函数edge()采用LOG算子进行边缘检测的代码如下: ```matlab % 采用LOG算子对含有噪声的图像进行边缘检测 close all; clear all; clc; I=imread('cameraman.tif'); I=im2double(I); J=imnoise(I,'gaussian',0,0.005); % 添加高斯噪声 % BW=edge(I,'log',thresh,sigma)该函数采用LOG算子对图像I进行边缘检测 % 若不设置阈值tresh或tresh为空,系统会自动计算tresh值 % sigma为LOG滤波器的标准差默认位2 K=edge(J,'log',[],2.3); % 采用LOG算子提取边缘 subplot(121),imshow(J); title('原始图像'); subplot(122),imshow(K); title('采用LOG算子提取的边缘'); ``` 上述代码先读取图像,添加高斯噪声,然后调用edge()函数使用LOG算子进行边缘检测,最后显示原始图像提取边缘后的图像 [^1]。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值