Lucene Similarity Scoring Formula

本文深入解析了文档相似度计算中的核心公式,包括坐标、查询归一化、IDF、TF-IDF加权和文档长度归一化等概念,详细解释了各部分的数学原理及其在实际应用中的作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


score(q,d) = coord(q,d)·queryNorm(q)·∑(tf(t in d)·idf(t)^2·t.getBoost()·norm(t,d)) (∑: t in q)

d:document
t:term
q:query

coor(q, d):
  public float coord(int overlap, int maxOverlap)
Implemented as overlap / maxOverlap.
overlap - the number of query terms matched in the document
maxOverlap - the total number of terms in the query


queryNorm(q):
  public float queryNorm(float sumOfSquaredWeights)
Implemented as 1/sqrt(sumOfSquaredWeights).
sumOfSquaredWeights - the sum of the squares of query term weights
sumOfSquaredWeights = q.getBoost()^2·∑(idf(t)·t.getBoost())^2   (∑:t in q)

idf(t):
  public float idf(long docFreq, long numDocs)
Implemented as log(numDocs/(docFreq+1)) + 1.
docFreq - the number of documents which contain the term
numDocs - the total number of documents in the collection(all the indices)

tf(t ind d):
  public float tf(float freq)
Implemented as sqrt(freq).
freq - the frequency of a term within a document

boost(t.field in d):
  public void setBoost(float b)
Sets the boost for this query clause to b.
  public float getBoost()
The boost is 1.0 by default.

norm(t, d):
norm(t,d) = lengthNorm·∏f.boost()  (∏:field f in d named as t)
  If the document has multiple fields with the same name, all their boosts are multiplied together.
lengthNorm = 1.0 / Math.sqrt(numTerms)
lengthNorm-computed when the document is added to the index in accordance with the number of tokens of this field in the document, so that shorter fields contribute more to the score. LengthNorm is computed by the Similarity class in effect at indexing.
Shorter fields (fewer tokens) get a bigger boost from this factor.
numTerms is the number of terms within a field, 
numTerms is FieldInvertState.getLength() if setDiscountOverlaps(boolean) is false, else it's FieldInvertState.getLength() - FieldInvertState.getNumOverlap().
FieldInvertState.getLength(): Get total number of terms in this field.


内容概要:本文详细介绍了基于FPGA的144输出通道可切换电压源系统的设计与实现,涵盖系统总体架构、FPGA硬件设计、上位机软件设计以及系统集成方案。系统由上位机控制软件(PC端)、FPGA控制核心和高压输出模块(144通道)三部分组成。FPGA硬件设计部分详细描述了Verilog代码实现,包括PWM生成模块、UART通信模块和温度监控模块。硬件设计说明中提及了FPGA选型、PWM生成方式、通信接口、高压输出模块和保护电路的设计要点。上位机软件采用Python编写,实现了设备连接、命令发送、序列控制等功能,并提供了一个图形用户界面(GUI)用于方便的操作和配置。 适合人群:具备一定硬件设计和编程基础的电子工程师、FPGA开发者及科研人员。 使用场景及目标:①适用于需要精确控制多通道电压输出的实验环境或工业应用场景;②帮助用户理解和掌握FPGA在复杂控制系统中的应用,包括PWM控制、UART通信及多通道信号处理;③为研究人员提供一个可扩展的平台,用于测试和验证不同的电压源控制算法和策略。 阅读建议:由于涉及硬件和软件两方面的内容,建议读者先熟悉FPGA基础知识和Verilog语言,同时具备一定的Python编程经验。在阅读过程中,应结合硬件电路图和代码注释,逐步理解系统的各个组成部分及其相互关系。此外,实际动手搭建和调试该系统将有助于加深对整个设计的理解。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值