基于遗传模拟退火混合优化算法的车间作业最优调度matlab仿真,输出甘特图

目录

1.程序功能描述

2.测试软件版本以及运行结果展示

3.核心程序

4.本算法原理

4.1遗传算法与模拟退火算法简介

4.2 GSAHO算法应用于JSSP

5.完整程序


1.程序功能描述

        车间作业调度问题(Job Shop Scheduling Problem, JSSP)是一种典型的生产调度问题,旨在确定一系列作业在多个并行工作中心上的加工顺序和起止时间,以最小化总完成时间、最大完工时间、机器闲置时间等目标。

2.测试软件版本以及运行结果展示

MATLAB2022a版本运行

3.核心程序

............................................................................... 
       % 交叉操作
       Pop0{j2}=func_cross(Bestp{j2},Pop0{j2},l2,l1);
       Pop0{j2}=func_cross(bestparticle1,Pop0{j2},l4,l3); 
   end 
   Fitjob=[Fitjob,minval];


   if jj == 1
      [x1,x2,x3]=func_decode2(bestparticle,Mjob,Mt,Nmach);
      disp('迭代1次时,最小流动时间,最大完工时间,最小间隙时间')
      [x1,x2,x3]
      figure
      func_gant(bestparticle,Pop0Long,Mjob,Mt,x2);
      title('迭代1次时甘特图');
   end
   if jj == 10
      [x1,x2,x3]=func_decode2(bestparticle,Mjob,Mt,Nmach);
      disp('迭代10次时,最小流动时间,最大完工时间,最小间隙时间')
      [x1,x2,x3]
      figure
      func_gant(bestparticle,Pop0Long,Mjob,Mt,x2);
      title('迭代10次时甘特图');
   end
   if jj == 500
      [x1,x2,x3]=func_decode2(bestparticle,Mjob,Mt,Nmach);
      disp('迭代500次时,最小流动时间,最大完工时间,最小间隙时间')
      [x1,x2,x3]
      figure
      func_gant(bestparticle,Pop0Long,Mjob,Mt,x2);
      title('迭代500次时甘特图');
   end
end


figure;
plot(Fitjob);
xlabel('迭代次数');
ylabel('适应度收敛曲线');
39

4.本算法原理

4.1遗传算法与模拟退火算法简介

        遗传算法(Genetic Algorithm, GA)是一种基于自然选择和遗传机制的全局搜索算法。其主要组成部分包括:

  • 编码(Encoding):将作业调度问题转化为基因型表示,如作业列表、工序顺序、工作中心分配等信息。

  • 种群初始化(Population Initialization):创建一个包含多个个体(作业调度方案)的初始种群。

  • 适应度评估(Fitness Evaluation):根据优化目标(如总完成时间)计算每个个体的适应度值。

  • 遗传操作(Genetic Operators):包括选择、交叉(Crossover)、变异(Mutation),用于生成下一代种群。

  • 终止条件(Termination Criteria):设定最大迭代次数、收敛阈值等,决定算法何时停止。

       模拟退火算法(Simulated Annealing, SA)模拟固体材料在冷却过程中的退火现象,实现概率性接受非改进解以跳出局部最优。其主要步骤包括:

  • 状态转移(State Transition):基于当前解生成一个邻域解。

  • 接受概率(Acceptance Probability)

  • 温度更新(Temperature Update):随着迭代过程,逐步降低温度T,遵循降温策略如指数降温:

    Tt+1​=αTt​

    其中,α是冷却系数,通常取值在(0 < α<1)之间。

4.2 GSAHO算法应用于JSSP

编码:采用作业列表表示法(Job-List Representation),每个个体由n个子串组成,每个子串代表一个作业,子串内部按照工序顺序排列。例如,I = [i_1, i_2, ..., i_n],其中i_j = [o_{j1}, o_{j2}, ..., o_{jm_j}]o_{jk}表示作业j的第k道工序在工作中心上的起始时间。

适应度函数:根据优化目标定义适应度函数。以最小化最大完工时间(Makespan)为例,适应度函数为:

其中,C_{max}为最大完工时间,p_{jk}为作业j的第k道工序的加工时间,t_{jk}为其等待时间(由调度决定)。

遗传操作:采用轮盘赌选择、部分匹配交叉(PMX)和单点变异等遗传算子。

模拟退火:在遗传算法的基础上,引入模拟退火过程,每次迭代后以一定的接受概率接受非改进解,以增加种群的多样性并避免早熟收敛。

5.完整程序

VVV

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

软件算法开发

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值